Reactive carbonyl species and their roles in sarcoplasmic reticulum Ca2+ cycling defect in the diabetic heart.

Heart Fail Rev

Departments of Pharmacology and Experimental Neuroscience, Durham Research Center, University of Nebraska Medical Center, DRC 3047, Omaha, NE, 68198-5800, USA.

Published: January 2014

Efficient and rhythmic cardiac contractions depend critically on the adequate and synchronized release of Ca(2+) from the sarcoplasmic reticulum (SR) via ryanodine receptor Ca(2+) release channels (RyR2) and its reuptake via sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a). It is well established that this orchestrated process becomes compromised in diabetes. What remain incompletely defined are the molecular mechanisms responsible for the dysregulation of RyR2 and SERCA2a in diabetes. Earlier, we found elevated levels of carbonyl adducts on RyR2 and SERCA2a isolated from hearts of type 1 diabetic rats and showed the presence of these posttranslational modifications compromised their functions. We also showed that these mono- and di-carbonyl reactive carbonyl species (RCS) do not indiscriminately react with all basic amino acid residues on RyR2 and SERCA2a; some residues are more susceptible to carbonylation (modification by RCS) than others. A key unresolved question in the field is which of the many RCS that are upregulated in the heart in diabetes chemically react with RyR2 and SERCA2a? This brief review introduces readers to the field of RCS and their roles in perturbing SR Ca(2+) cycling in diabetes. It also provides new experimental evidence that not all RCS that are upregulated in the heart in diabetes chemically react with RyR2 and SERCA2a, methylglyoxal and glyoxal preferentially do.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732283PMC
http://dx.doi.org/10.1007/s10741-013-9384-9DOI Listing

Publication Analysis

Top Keywords

ryr2 serca2a
16
reactive carbonyl
8
carbonyl species
8
sarcoplasmic reticulum
8
ca2+ cycling
8
field rcs
8
rcs upregulated
8
upregulated heart
8
heart diabetes
8
diabetes chemically
8

Similar Publications

Background And Purpose: Sarcoplasmic reticulum Ca-ATPase (SERCA2a) is impaired in heart failure. Phosphodiesterases (PDEs) are implicated in the modulation of local cAMP signals and protein kinase A (PKA) activity essential for cardiac function. We characterise PDE isoforms that underlie decreased activities of SERCA2a and reduced cardiac contractile function in diabetic cardiomyopathy.

View Article and Find Full Text PDF

Background: The EF-hand Ca sensor protein S100A1 has been identified as a molecular regulator and enhancer of cardiac performance. The ability of S100A1 to recognize and modulate the activity of targets such as SERCA2a (sarcoplasmic reticulum Ca ATPase) and RyR2 (ryanodine receptor 2) in cardiomyocytes has mostly been ascribed to its hydrophobic C-terminal α-helix (residues 75-94). We hypothesized that a synthetic peptide consisting of residues 75 through 94 of S100A1 and an N-terminal solubilization tag (S100A1ct) could mimic the performance-enhancing effects of S100A1 and may be suitable as a peptide therapeutic to improve the function of diseased hearts.

View Article and Find Full Text PDF

Expression level of cardiac ryanodine receptors dictates properties of Ca-induced Ca release.

Biophys Rep (N Y)

December 2024

Department of Cell and Molecular Physiology, Strich School of Medicine, Loyola University Chicago, Maywood, Illinois. Electronic address:

The type 2 ryanodine receptor (RyR2) is the major Ca release channel required for Ca-induced Ca release (CICR) and cardiac excitation-contraction coupling. The cluster organization of RyR2 at the dyad is critical for efficient CICR. Despite its central role in cardiac Ca signaling, the mechanisms that control CICR are not fully understood.

View Article and Find Full Text PDF

X-ray Radiotherapy Impacts Cardiac Dysfunction by Modulating the Sympathetic Nervous System and Calcium Transients.

Int J Mol Sci

August 2024

PSE-SANTE/SESANE/LRTOX, Institut de Radioprotection et de Sûreté Nucléaire-IRSN, 92260 Fontenay-aux-Roses, France.

Recent epidemiological studies have shown that patients with right-sided breast cancer (RBC) treated with X-ray irradiation (IR) are more susceptible to developing cardiovascular diseases, such as arrhythmias, atrial fibrillation, and conduction disturbances after radiotherapy (RT). Our aim was to investigate the mechanisms induced by low to moderate doses of IR and to evaluate changes in the cardiac sympathetic nervous system (CSNS), atrial remodeling, and calcium homeostasis involved in cardiac rhythm. To mimic the RT of the RBC, female C57Bl/6J mice were exposed to X-ray doses ranging from 0.

View Article and Find Full Text PDF

The E-twenty-six variant 1 (ETV1)-dependent transcriptome plays an important role in atrial electrical and structural remodelling and the occurrence of atrial fibrillation (AF), but the underlying mechanism of ETV1 in AF is unclear. In this study, cardiomyocyte-specific ETV1 knockout (ETV1MyHC, ETV1-CKO) mice were constructed to observe the susceptibility to AF and the underlying mechanism in AF associated with ETV1-CKO mice. AF susceptibility was examined by intraesophageal burst pacing, induction of AF was increased obviously in ETV1-CKO mice than WT mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!