Cardiac fibroblasts (CFs) produce extracellular matrix (ECM) which is a potent regulator of heart cell function and growth, and provides a supportive microenvironment for heart cells. Therefore, CF-derived ECM produced in vitro is very suitable for heart-cell culturing and cardiac tissue engineering. The aim of this study was to investigate the effect of CF-derived ECM produced in vitro on the growth and metabolism of cultured ventricular cells. CF-derived ECM-coated cell culture dishes were prepared by culturing rat CFs and then decellularizing the cultures. Isolated neonatal rat ventricular cells were seeded on ECM-coated, collagen I-coated or uncoated dishes, and the growth of cells after 1-5 days of culture was assayed with MTT reagent. In addition, cellular metabolic activity was analyzed by spectrophotometric methods and protein levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase type 2a (SERCA2a) by Western blotting. The relative growth of ventricular cells was better on ECM-coated than on uncoated or collagen I-coated dishes. Furthermore, the glucose consumption ratio, lactic acid production ratio, Na(+)/K(+)-ATPase activity, SERCA activity and protein levels of SERCA2a were all higher in cells on the ECM-coated dishes. In conclusion, cardiac fi broblast-derived ECM produced in vitro stimulates the growth and metabolism of cultured ventricular cells. This study indicates that the bioactivity of the ECM supports heart cell growth in vitro, and this might be useful for cardiac tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1536/ihj.54.40 | DOI Listing |
J Exp Biol
January 2025
Hannover Medical School, Institute of Functional and Applied Anatomy, 30625 Hanover, Germany.
Small mammals have a higher heart rate and, relative to body mass (Mb), a higher metabolic rate than large mammals. In contrast, heart weight and stroke volume scale linearly with Mb. With mitochondria filling approximately 50% of a shrew cardiomyocyte - space unavailable for myofibrils - it is unclear how small mammals generate enough contractile force to pump blood into circulation.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
February 2025
From the University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany (T.L., B.E.B., A. Schulz, R.E., K.R.R., K.T., G.H., M.P., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany (T.L., B.E.B., A. Schulz, R.E., K.R.R., K.T., G.H., M.P., A. Schuster); Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz); Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany (S.J.B.); German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany (S.J.B.); FORUM Radiology, Rosdorf, Germany (J.T.K.); Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany (G.H.); and FORUM Cardiology, Rosdorf, Germany (A. Schuster).
Purpose To assess the prognostic implications of cardiac MRI-derived imaging markers in individuals with severe aortic stenosis (AS). Materials and Methods This prospective study (German Clinical Trials Register, DRKS00024479) enrolled individuals with severe AS who underwent cardiac MRI before transcatheter aortic valve replacement (TAVR) from January 2017 to March 2022. Image analyses included myocardial volumes, cardiac MRI feature tracking-derived left atrial (LA) and right atrial (RA) as well as left ventricular (LV) and right ventricular (RV) strain, myocardial T1 mapping, and late gadolinium enhancement analyses.
View Article and Find Full Text PDFKardiologiia
December 2024
Research Institute of Cardiology, Branch of the Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk.
Aim: Comparative assessment of structural changes in cardiomyocyte mitochondria of the right atrial appendage and the mitochondrial respiratory function in peripheral blood leukocytes in a cohort of patients after acute decompensated heart failure (ADHF) and with stable chronic heart failure of ischemic etiology with reduced ejection fraction (CHFrEF) or moderately reduced ejection fraction (CHFmrEF) of the left ventricle.
Material And Methods: The study analyzed 40 micrographs of right atrial appendage cardiomyocytes obtained from 12 patients with CHFrEF and CHFmrEF. The study protocol was registered on ClinicalTrials.
Comp Biochem Physiol C Toxicol Pharmacol
January 2025
Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China. Electronic address:
The compound m-Cresol, also referred to as 3-methylphenol,acts as a precursor in the creation of pesticides and plasticizers. This research has conducted a thorough evaluation of the toxic effects of m-cresol on the cardiac development of juvenile zebrafish, from 6 to 72 hpf. The study's results reveal that higher concentrations of m-Cresol, compared to lower ones, result in more severe heart abnormalities in zebrafish larvae.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom.
Aims: Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).
Methods And Results: We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!