Controlled synthesis of CuO with various hierarchical structures consisting of self-organized nanoparticles is realized by using n-octylamine (OLA) as a structure inducing agent via a facile hydrothermal synthetic method. The growth and assemblage of CuO can be finely tuned by selecting the preparative parameters. In particular, it is found that the degree of the hierarchical organization can be modulated by simply changing the amount of the n-octylamine and CuO nanoparticles exhibit self-assembled two-dimensional (2D) sheet-like, three-dimensional (3D) disk-like and bowknot-like architectures, respectively. In the present case, OLA serves as a capping surfactant that can modulate growth of CuO nanocrystals via hydrophobic forces between the OLA molecules. CuO nanoparticles can be self-assembled into different complex architectures depending on the strength of hydrophobic forces. Hierarchical sphere-like CuO assembled from nanorods can also be easily fabricated by adjusting the starting NaOH to CuCl2 volume ratio, in which OLA serves not only as the structure-directing agent, but also as a weak base agent to produce hydroxyl anions. The electrochemical performances of the as-synthesized different products for sensing nitrite oxidation are evaluated. The results reveal that the electrocatalytic activity is related to the secondary nanostructures. Compared to the others, the bowknot-shaped and sphere-shaped CuO products exhibit excellent electrocatalytic activity toward nitrite oxidation and fast current response in nitrite sensing because of their peculiar hierarchical structures with high BET surface areas and well-ordered pores.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2012.12.071DOI Listing

Publication Analysis

Top Keywords

hierarchical structures
12
nitrite oxidation
12
cuo
8
synthesis cuo
8
cuo nanoparticles
8
ola serves
8
hydrophobic forces
8
electrocatalytic activity
8
hierarchical
5
one-step self-assembled
4

Similar Publications

Style Transfer of Chinese Wuhu Iron Paintings Using Hierarchical Visual Transformer.

Sensors (Basel)

December 2024

College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.

Within the domain of traditional art, Chinese Wuhu Iron Painting distinguishes itself through its distinctive craftsmanship, aesthetic expressiveness, and choice of materials, presenting a formidable challenge in the arena of stylistic transformation. This paper introduces an innovative Hierarchical Visual Transformer (HVT) framework aimed at achieving effectiveness and precision in the style transfer of Wuhu Iron Paintings. The study begins with an in-depth analysis of the artistic style of Wuhu Iron Paintings, extracting key stylistic elements that meet technical requirements for style conversion.

View Article and Find Full Text PDF

Extraction of Natural-Based Raw Materials Towards the Production of Sustainable Man-Made Organic Fibres.

Polymers (Basel)

December 2024

Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal.

Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review will first highlight the most relevant bio-based sources, with a particular focus on promising unconventional biomass sources (terrestrial vegetables, aquatic vegetables, fungi, and insects), as well as agroforestry and industrial biowaste (food, paper/wood, and textile).

View Article and Find Full Text PDF

In Silico Design of Dual Estrogen Receptor and Hsp90 Inhibitors for ER-Positive Breast Cancer Through a Mixed Ligand/Structure-Based Approach.

Molecules

December 2024

Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.

Breast cancer remains one of the most prevalent and lethal malignancies in women, particularly the estrogen receptor-positive (ER+) subtype, which accounts for approximately 70% of cases. Traditional endocrine therapies, including aromatase inhibitors, selective estrogen receptor degraders/antagonists (SERDs), and selective estrogen receptor modulators (SERMs), have improved outcomes for metastatic ER+ breast cancer. However, resistance to these agents presents a significant challenge.

View Article and Find Full Text PDF

Insights into the Silylation of Benzodiazepines Using ,-Bis(trimethylsilyl)trifluoroacetamide (BSTFA): In Search of Optimal Conditions for Forensic Analysis by GC-MS.

Molecules

December 2024

Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Sede Tunja, Avenida Central del Norte, Boyacá 150003, Colombia.

Silylation is a widely used derivatization technique for the gas chromatographic analysis of benzodiazepines, a class of psychoactive drugs commonly encountered in forensic and biological samples. This study investigated the optimal experimental conditions for the silylation of benzodiazepines using ,-bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane (BSTFA + 1% TMCS), a widely employed silylating agent. Ten structurally different benzodiazepines, including variations within the classic 1,4-benzodiazepine core and triazolo ring derivatives, were selected to address the effect of structural diversity on silylation.

View Article and Find Full Text PDF

This review discusses the key factors influencing the exceptional thermal resistance and surface properties of silicone-containing composites. Silicone polymers, known for their excellent chemical and physical properties, are widely used in a number of innovative products. In order to make silicone composites suitable for innovative applications, it is essential to ensure that they have both very good thermal resistance and superhydrophobic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!