Plant hormone auxin is a key regulator of growth and development. Auxin affects gene expression through ARF transcription factors, which bind specifically auxin responsive elements (AuxREs). Auxin responsive genes usually have more than one AuxRE, for example, a widely used auxin sensor DR5 contains seven AuxREs. Auxin responsive regions of several plant genes have been studied using sets of transgenic constructions in which the activity of one or several AuxREs were abolished. Here we present the method for analysis of the datasets on promoter activity assays having promoter sequences, namely, number and sequences of AuxREs, altogether with their measured auxin induction level. The method for a reverse problem solution considers two extreme models of AuxRE cooperation. Additive model describes auxin induction level of a gene as a sum of the individual AuxREs impacts. Multiplicative model considers pure cooperation between the AuxREs, where the combined effect is the multiplication of the individual AuxRE impacts. The reverse problem solution allows estimating the impact of an individual AuxRE into the induction level and the model for their cooperation. For promoters of three genes belonging to different plant species we showed that the multiplicative model fits better than additive. The reverse problem solution also suggests repressive state of auxin responsive promoters before auxin induction. The developed method provides possibility to investigate AuxRE structure-activity relationship and may be used as the basis for a novel approach for AuxRE recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0219720013400118DOI Listing

Publication Analysis

Top Keywords

auxin responsive
20
reverse problem
16
problem solution
16
auxin induction
12
induction level
12
auxin
10
responsive elements
8
auxres auxin
8
multiplicative model
8
individual auxre
8

Similar Publications

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

Multi-locus genome wide association study uncovers genetics of fresh seed dormancy in groundnut.

BMC Plant Biol

December 2024

Center of Excellence in Genomics & Systems Biology (CEGSB) and Centre for Pre-breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.

Pre-harvest sprouting (PHS) in groundnut leads to substantial yield losses and reduced seed quality, resulting in reduced market value of groundnuts. Breeding cultivars with 14-21 days of fresh seed dormancy (FSD) holds promise for precisely mitigating the yield and quality deterioration. In view of this, six multi-locus genome-wide association study (ML-GWAS) models alongside a single-locus GWAS (SL-GWAS) model were employed on a groundnut mini-core collection using multi season phenotyping and 58 K "Axiom_Arachis" array genotyping data.

View Article and Find Full Text PDF

DNA methylation repatterning is an epigenomic component of plant stress response, but the extent that methylome data can elucidate changes in plant growth following stress onset is not known. We applied high-resolution DNA methylation analysis to decode plant responses to short- and long-term high light stress and, integrating with gene expression data, attempted to predict components of plant growth response. We identified 105 differentially methylated genes (DMGs) following 1 h of high light treatment and 193 DMGs following 1 week of intermittent high light treatment.

View Article and Find Full Text PDF

Lead (Pb) pollution in soil affects growth of plants. Plants' endogenous hormones play an important role in resistance to Pb of plant. In order to explore the hormone-based mechanisms of Pb accumulationin in hyperaccumulator , a pot experiment was conducted to analyze the contents of endogenous hormones (auxin, gibberellin, abscisic acid, and cytokinin) and related genes expressions, and Pb contents of , as well as the transporter (cation exchangers (CAX), heavy metal ATPases (HMA), and ATP-binding cassette (ABC)) concentrations under foliar spraying of indoleacetic acid (IAA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!