Phytohormone auxin is the main regulator of plant growth and development. Nonuniform auxin distribution in plant tissue sets positional information, which determines morphogenesis. Auxin is transported in tissue by means of diffusion and active transport through the cell membrane. There is a number of auxin carriers performing its influx into a cell (AUX\LAX family) or efflux from a cell (PIN, PGP families). The paper presents mathematical models for auxin transport in vascular tissues of Arabidopsis thaliana L.root tip, namely protophloem and protoxylem. Tissue specificity of auxin active transport was considered in these models. There is PIN-mediated auxin efflux in both protoxylem and protophloem, but AUX1-mediated influx exists only in protophloem. Optimal values of parameters were adjusted for model solutions to fit the experimentally observed auxin distributions in the root tip. Based on simulation results we predicted that shoot-derived auxin flow to protophloem is lower than one to protoxylem, and the efficiency of PIN-mediated auxin transport in protophloem is higher than in protoxylem. In summary, our simulation showed that despite the same auxin distribution pattern, provascular tissues in the root tip differ in dynamics of auxin transport.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0219720013400106DOI Listing

Publication Analysis

Top Keywords

auxin transport
16
auxin
13
protoxylem protophloem
8
arabidopsis thaliana
8
auxin distribution
8
active transport
8
pin-mediated auxin
8
transport
6
protophloem
6
protoxylem
5

Similar Publications

Plant nitrate transporters in the NPF (NRT1) family are characterized by multifunctionality and their involvement in a number of physiological processes. The proteins in this family have been identified in many monocotyledonous and dicotyledonous species: a bioinformatic analysis predicts from 20 to 139 members in the plant genomes sequenced so far, including mosses. Plant NPFs are phylogenetically related to proton-coupled oligopeptide transporters, which are evolutionally conserved in all kingdoms of life apart from Archaea.

View Article and Find Full Text PDF

Melatonin Enhances the Low-Calcium Stress Tolerance by Regulating Brassinosteroids and Auxin Signals in Wax Gourd.

Antioxidants (Basel)

December 2024

Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China.

In plants, calcium (Ca) serves as an essential nutrient and signaling molecule. Melatonin is a biologically active and multi-functional hormone that plays an important role in improving nutrient use efficiency. However, its involvement in plant responses to Ca deficiency remains largely unexplored.

View Article and Find Full Text PDF

Electrocultivation of Arabidopsis thaliana increases water and mineral absorption, electric charge and auxin accumulation, enhancing growth and development.

Bioelectrochemistry

December 2024

Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:

Numerous studies in various species have demonstrated that the application of an electric field can improve plant growth. However, plants showed inconsistent responses and the background mechanism for responses to electric fields remain unclear. Here, to deepen our understanding of the mechanisms involved in electric field-induced changes in physiology, we investigated the effects of electric fields on the growth and development of Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

A root system architecture regulator modulates OsPIN2 polar localization in rice.

Nat Commun

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).

View Article and Find Full Text PDF

Genome-wide characterization of () genes in bermudagrass and ectopically functional analysis of gene in .

Physiol Mol Biol Plants

December 2024

Department of Grassland Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China.

Unlabelled: Auxin response factors (ARFs) are important transcription factors that regulate the expression of auxin response genes, thus play crucial roles in plant growth and development. However, the functions of genes in bermudagrass ( L.), a turfgrass species of great economic value, remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!