Estimating minerals abundance from reflectance spectra is one of the fundamental goals of remote sensing lunar exploration, and the main difficulties are the complicated mixing law of minerals spectrum and spectral features being sensitive to several kinds of factors such as topography, particle size and roughness etc. A method based on spectral unmixing was put forward and tested in the present paper. Before spectra are unmixed the spectral continuum is removed for clarifying and strengthening spectral features. The absorption features and reflectance features (the upward curving parts of spectra between absorption features) are integrated for unmixing to improve the unmixing performance. The Hapke model was used to correct unmixing error due to nonlinear mixing of minerals spectra. Forty three mixed spectra of olivine, clinopyroxene, hypersthene and plagioclase were used to validate the above method. The four minerals abundance was estimated under the conditions of being unaware of endmember spectra used to mix, granularity and chemical composition of minerals. Residual error, abundance error and correlation coefficient between retrieved and true abundance were 5.0 Vol%, 14.4 Vol% and 0.92 respectively. The method and result of this paper could be referred in the lunar minerals mapping of imaging spectrometer data such as M3.

Download full-text PDF

Source

Publication Analysis

Top Keywords

minerals abundance
12
spectral unmixing
8
spectral features
8
absorption features
8
minerals
7
spectra
6
spectral
5
abundance
5
features
5
method
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!