Collagen is one of the main structural proteins in human dermis. The lack and atrophy of collagen induces the appearance of wrinkles and beginning of aging. L-ascorbic acid has significant effects on skin-whitening and anti-oxidation, which helps keep skin beautiful and healthy, respectively. With auto-fluorescence, the amount of collagen is in proportion to the strength of its fluorescence spectrum. Therefore, a new method is proposed to determine the content of collagen and the health of skin through the analysis of fluorescence and reflection spectra. Compared with conventional chemical analysis, this method needs less time, and is much more noninvasive. Solutions of different concentration of external collagen and L-ascorbic acid were applied on healthy, spotted and wrinkled skin in this study. By the time dependence of fluorescence and reflection spectra, the effects of skin absorption and restoration of collagen and L-ascorbic acid were derived, respectively. The experiment shows that the collagen or L-ascorbic acid solution of adequate concentration is best for skin absorption. Admixed with suitable concentration of L-ascorbic acid, the collagen solution was well absorbed and results in effect of smoothing wrinkles; the effect of L-ascorbic acid to clear up the spots was also demonstrated. By scientific explorations shown above, the restoration effects of cosmetic materials were validated, and people's confusion and myth about skincare products were avoided. Consequently, this study helps advance cosmetic industry.
Download full-text PDF |
Source |
---|
Heliyon
January 2025
University of Campinas, School of Food Engineering, 13056-405, Campinas, SP, Brazil.
The aim of this study was to examine the drying kinetics of L. fruits at various maturation stages (I to V) using a range of mathematical models (Henderson and Pabis, Lewis, Logarithmic, Midilli, and Page). Additionally, an assessment of the resulting flours' quality was conducted.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Material Science and Engineering, Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University Haikou 570228 China
With the progress of modern technology and the diversification of societal demands, traditional materials with single properties can no longer meet the requirements of complex and constantly evolving application scenarios. To tackle intricate biomedical applications like disease diagnosis and treatment, scientists are focusing on exploring the design of novel multifunctional biomaterials that possess diverse activities. Bismuth titanate (BiTiO, BTO), which has multifunctionality and great application potential, unfortunately suffers from inadequate photocatalytic performance.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
Electrical fires pose significant threats to the lives and property safety of people. Although utilizing coatings to impart conductivity and flame retardancy to materials is convenient and reliable, traditional layer-by-layer preparation methods have the limitations of cost, convenience and scalability. Therefore, a single-layer coating that simultaneously imparts excellent conductivity and flame retardancy to materials presents broader application prospects.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Public Health Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Mangalore, Karnataka, Manipal, 576104, India.
Background: Due to their acidic nature, certain medications can have deleterious effects on tooth enamel. Fluoride is a popular method for reversing these effects. Therefore, this study aimed to assess the impact of acidic medications, specifically anti-asthmatic drugs and vitamin C tablets, on enamel surfaces and to investigate the effects of fluoride following drug exposure.
View Article and Find Full Text PDFLangmuir
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin RD, Shanghai 200234, China.
Ascorbyl tetraisopalmitate (VC-IP) is a novel form of ascorbic acid characterized by reduced water solubility due to complete acylation with palmitate. This study investigated the potential cosmetic application of VC-IP when encapsulated in lyotropic liquid crystal nanoparticles (VC-IP LCNPs) by using a high-pressure homogenization (HPH) method. The particle size, zeta potential, and polydispersity index (PDI) of the obtained VC-IP LCNPs were determined as 158.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!