Construction and characterization of an infectious molecular clone of Koala retrovirus.

J Virol

Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto, Japan.

Published: May 2013

Koala retrovirus (KoRV) is a gammaretrovirus that is currently endogenizing into koalas. Studies on KoRV infection have been hampered by the lack of a replication-competent molecular clone. In this study, we constructed an infectious molecular clone, termed plasmid pKoRV522, of a KoRV isolate (strain Aki) from a koala reared in a Japanese zoo. The virus KoRV522, derived from pKoRV522, grew efficiently in human embryonic kidney (HEK293T) cells, attaining 10(6) focus-forming units/ml. Several mutations in the Gag (L domain) and Env regions reported to be involved in reduction in viral infection/production in vitro are found in pKoRV522, yet KoRV522 replicated well, suggesting that any effects of these mutations are limited. Indeed, a reporter virus pseudotyped with pKoRV522 Env was found to infect human, feline, and mink cell lines efficiently. Analyses of KoRV L-domain mutants showed that an additional PPXY sequence, PPPY, in Gag plays a critical role in KoRV budding. Altogether, our results demonstrate the construction and characterization of the first infectious molecular clone of KoRV. The infectious clone reported here will be useful for elucidating the mechanism of endogenization of the virus in koalas and screening for antiretroviral drugs for KoRV-infected koalas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624308PMC
http://dx.doi.org/10.1128/JVI.01584-12DOI Listing

Publication Analysis

Top Keywords

molecular clone
16
infectious molecular
12
construction characterization
8
characterization infectious
8
koala retrovirus
8
korv
6
clone
5
infectious
4
molecular
4
clone koala
4

Similar Publications

CTB6 Confers Cold Tolerance at the Booting Stage by Maintaining Tapetum Development in Rice.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Rice is highly sensitive to cold stress, particularly at the booting stage, which significantly threatens rice production. In this study, we cloned a gene, CTB6, encoding a lipid transfer protein involved in cold tolerance at the booting stage in rice, based on our previous fine-mapped quantitative trait locus (QTL) qCTB10-2. CTB6 is mainly expressed in the tapetum and young microspores of the anther.

View Article and Find Full Text PDF

Construction of Immune Single Domain Antibodies Library for Development of Specific Nanobodies Using Phage Display Strategy.

Recent Pat Biotechnol

January 2025

Center of Excellence in Recombinant Biopharmaceutical Proteins, Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.

Background: poses a considerable global public health challenge. In Egypt, approximately 60% of the inhabitants in the Northern and Eastern areas of the Nile Delta are affected by this parasite, whereas the Southern region experiences a significantly lower infection rate of 6%.

Aim: Construction of an immune phage display Nbs library based on the VHH framework for selecting -specific Nbs for seeking cost-effective, sensitive, and specific diagnostic tools for rapidly detecting mansoni.

View Article and Find Full Text PDF

Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C.

View Article and Find Full Text PDF

Kiwifruit canker, caused by pv. (PSA), has led to significant losses in the kiwifruit industry each year. Due to the drug resistance feature of PSA, biological control is currently the most promising method.

View Article and Find Full Text PDF

Characterizing Three Heat Shock Protein 70 Genes of and Their Expression in Response to Temperature and Insecticide Stress.

J Agric Food Chem

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

is a highly polyphagous pest that causes substantial agricultural damage. Temperature and insecticides are two major abiotic stresses affecting their population abundance. Heat shock proteins play an essential role in cell protection when insects are exposed to environmental stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!