Esophageal cancer is one of the most common cancer and leading cause of cancer death worldwide. Multiphoton microscopy (MPM) has become a novel optical tool of choice for imaging tissue architecture and cellular morphology based on two-photon excited fluorescence and second harmonic generation. In this study, we used MPM to image microstructure of human normal esophagus, carcinoma in situ, and early invasive carcinoma in order to investigate the morphological change of tissue structure during the early phase of tumor progression. The diagnostic features such as the appearance of cancerous cells, the absence of the basement membrane were extracted to distinguish between normal and cancerous esophagus tissue. The infiltration depth during tumor progression was determined by the appearance of cancerous cells. The significant change of layer structure between cancerous tissue and normal esophagus was described. We also quantitatively described the differences of morphology between normal and cancerous cells. These results correlated well with the corresponding histological findings. With the advancement of clinically miniaturized MPM and the multi-photon probe, combining MPM with standard endoscopy will therefore allow us to make a real-time in vivo diagnosis of early esophageal cancer at the cellular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sca.21079 | DOI Listing |
J Appl Genet
January 2025
Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznań, Poland.
Endometrial cancer (EC) is the second most frequent gynecological malignancy and the sixth most common women's cancer worldwide. EC incidence rate is increasing rapidly. Apart from the classical, we should consider angiogenesis and hypoxia-related genes as a reason for EC manifestation and progression.
View Article and Find Full Text PDFArch Pharm Res
January 2025
College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
Tumor microenvironment (TME) is composed of diverse cell types whose interactions, both direct and indirect, significantly influence tumorigenesis and therapeutic outcomes. Within TME, reactive oxygen species (ROS) are produced by various cells and exhibit a dual role: moderate ROS levels promote tumor initiation and progression, whereas excessive levels induce cancer cell death, influencing the efficacy of anticancer therapies. Inflammasomes, cytosolic multiprotein complexes, are pivotal in multiple stages of tumorigenesis and play a crucial role in establishing the inflammatory TME.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
Purpose: Low-dose CT (LDCT) screening effectively reduces lung adenocarcinoma (LUAD) mortality. However, accurately evaluating the malignant potential of indeterminate lung nodules remains a challenge. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6), a potential biomarker for distinguishing benign pulmonary nodules from LUAD, may be leveraged for noninvasive positron emission tomography (PET) imaging to aid LUAD diagnosis.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
Triple-negative breast cancer (TNBC) is characterized by high aggressiveness and recurrence rates due to the lack of effective treatment options. Piperine, a natural alkaloid extracted from black pepper, has demonstrated significant anticancer potential in recent years. Therefore, developing piperine derivatives to enhance its anticancer effects holds critical clinical significance.
View Article and Find Full Text PDFAnn Hematol
January 2025
Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
The prefibrotic phase of primary myelofibrosis (pre-PMF) represents a distinct subentity within the spectrum of myeloproliferative neoplasms (MPNs), recognized by the World Health Organization (WHO) and the International Consensus Classification (ICC). Pre-PMF is characterized by unique morphological, clinical, and molecular features, distinguishing it from essential thrombocythemia (ET) and overt myelofibrosis (overt-PMF). The diagnostic process for pre-PMF relies on bone marrow histology, identification of molecular mutations and exclusion of other myeloid neoplasms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!