Gomesin is an 18-residue peptide originally isolated from the hemocytes of the Brazilian spider Acanthoscurria gomesiana. A broad spectrum of bioactivities have been attributed to gomesin, including in vivo and in vitro cytotoxicity against tumour cells, antimicrobial, antifungal, anti-Leishmania and antimalarial effects. Given the potential therapeutic applications of gomesin, it was of interest to determine if an engineered version with a cyclic backbone has improved stability and bioactivity. Cyclization has been shown to confer enhanced stability and activity to a range of bioactive peptides and, in the case of a cone snail venom peptide, confer oral activity in a pain model. The current study demonstrates that cyclization improves the in vitro stability of gomesin over a 24 hour time period and enhances cytotoxicity against a cancer cell line without being toxic to a noncancerous cell line. In addition, antimalarial activity is enhanced upon cyclization. These findings provide additional insight into the influences of backbone cyclization on the therapeutic potential of peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201300034DOI Listing

Publication Analysis

Top Keywords

stability bioactivity
8
cyclization
5
gomesin
5
cyclization antimicrobial
4
antimicrobial peptide
4
peptide gomesin
4
gomesin native
4
native chemical
4
chemical ligation
4
ligation influences
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!