The complex formed between the U2 and U6 small nuclear (sn)RNA molecules of the eukaryotic spliceosome plays a critical role in the catalysis of precursor mRNA splicing. Here, we have used enzymatic structure probing, (19)F NMR, and analytical ultracentrifugation techniques to characterize the fold of a protein-free biophysically tractable paired construct representing the human U2-U6 snRNA complex. Results from enzymatic probing and (19)F NMR for the complex in the absence of Mg(2+) are consistent with formation of a four-helix junction structure as a predominant conformation. However, (19)F NMR data also identify a lesser fraction (up to 14% at 25°C) of a three-helix conformation. Based upon this distribution, the calculated ΔG for inter-conversion to the four-helix structure from the three-helix structure is approximately -4.6 kJ/mol. In the presence of 5 mM Mg(2+), the fraction of the three-helix conformation increased to ∼17% and the Stokes radius, measured by analytical ultracentrifugation, decreased by 2%, suggesting a slight shift to an alternative conformation. NMR measurements demonstrated that addition of an intron fragment to the U2-U6 snRNA complex results in displacement of U6 snRNA from the region of Helix III immediately 5' of the ACAGAGA sequence of U6 snRNA, which may facilitate binding of the segment of the intron adjacent to the 5' splice site to the ACAGAGA sequence. Taken together, these observations indicate conformational heterogeneity in the protein-free human U2-U6 snRNA complex consistent with a model in which the RNA has sufficient conformational flexibility to facilitate inter-conversion between steps of splicing in situ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677266PMC
http://dx.doi.org/10.1261/rna.038265.113DOI Listing

Publication Analysis

Top Keywords

u2-u6 snrna
16
snrna complex
16
19f nmr
12
conformational heterogeneity
8
heterogeneity protein-free
8
protein-free human
8
probing 19f
8
analytical ultracentrifugation
8
human u2-u6
8
three-helix conformation
8

Similar Publications

The conserved SR-like protein Npl3 promotes splicing of diverse pre-mRNAs. However, the RNA sequence(s) recognized by the RNA Recognition Motifs (RRM1 & RRM2) of Npl3 during the splicing reaction remain elusive. Here, we developed a split-iCRAC approach in yeast to uncover the consensus sequence bound to each RRM.

View Article and Find Full Text PDF

Mechanism of protein-guided folding of the active site U2/U6 RNA during spliceosome activation.

Science

December 2020

Cellular Biochemistry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.

Spliceosome activation involves extensive protein and RNA rearrangements that lead to formation of a catalytically active U2/U6 RNA structure. At present, little is known about the assembly pathway of the latter and the mechanism whereby proteins aid its proper folding. Here, we report the cryo-electron microscopy structures of two human, activated spliceosome precursors (that is, pre-B complexes) at core resolutions of 3.

View Article and Find Full Text PDF

Splicing of precursor messenger RNA is catalyzed by the spliceosome, a dynamic ribonucleoprotein assembly including five small nuclear (sn)RNAs and >100 proteins. RNA components catalyze the two transesterification reactions, but proteins perform critical roles in assembly and rearrangement. The catalytic core comprises a paired complex of U2 and U6 snRNAs for the major form of the spliceosome and U12 and U6 snRNAs for the minor variant (∼0.

View Article and Find Full Text PDF

U2 and U6 small nuclear (sn)RNAs are the only snRNAs directly implicated in catalyzing the splicing of pre-mRNA, but assembly and rearrangement steps prior to catalysis require numerous proteins. Previous studies have shown that the protein-free U2-U6 snRNA complex adopts two conformations in equilibrium, characterized by four and three helices surrounding a central junction. The four-helix conformer is strongly favored in the in vitro protein-free state, but the three-helix conformer predominates in spliceosomes.

View Article and Find Full Text PDF
Article Synopsis
  • The spliceosome's U2/U6 RNA core relies on both RNA interactions and spliceosomal proteins for its stable 3D structure.
  • Mutations in certain U6 nucleotides showed that while some RNA interactions had minimal impact on splicing, others were crucial, especially U6-G60, whose removal completely halted splicing.
  • The findings suggest that while RNA stacking interactions enhance coordination of metal M2 crucial for splicing, the overall function of the RNA core is supported by a combination of RNA-RNA and Protein-RNA interactions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!