Despite a general repression of translation under hypoxia, cells selectively upregulate a set of hypoxia-inducible genes. Results from deep sequencing revealed that Let-7 and miR-103/107 are hypoxia-responsive microRNAs (HRMs) that are strongly induced in vascular endothelial cells. In silico bioinformatics and in vitro validation showed that these HRMs are induced by HIF1α and target argonaute 1 (AGO1), which anchors the microRNA-induced silencing complex (miRISC). HRM targeting of AGO1 resulted in the translational desuppression of VEGF mRNA. Inhibition of HRM or overexpression of AGO1 without the 3' untranslated region decreased hypoxia-induced angiogenesis. Conversely, AGO1 knockdown increased angiogenesis under normoxia in vivo. In addition, data from tumor xenografts and human cancer specimens indicate that AGO1-mediated translational desuppression of VEGF may be associated with tumor angiogenesis and poor prognosis. These findings provide evidence for an angiogenic pathway involving HRMs that target AGO1 and suggest that this pathway may be a suitable target for anti- or proangiogenesis strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582133PMC
http://dx.doi.org/10.1172/JCI65344DOI Listing

Publication Analysis

Top Keywords

target argonaute
8
hrms induced
8
translational desuppression
8
desuppression vegf
8
ago1
5
hypoxia-responsive mirnas
4
target
4
mirnas target
4
argonaute promote
4
angiogenesis
4

Similar Publications

rRNA-derived fragments (rRFs) are a class of emerging post-transcriptional regulators of gene expression likely binding to the transcripts of target genes. However, the lack of knowledge about such targets hinders our understanding of rRF functions or binding mechanisms. The paucity of resources supporting the identification of the targets of rRFs creates a bottleneck in the fast-developing field.

View Article and Find Full Text PDF

A small RNA effector conserved in herbivore insects suppresses host plant defense by cross-kingdom gene silencing.

Mol Plant

January 2025

State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Herbivore insects deploy salivary effectors to manipulate the defense of their host plants. However, it remains unclear whether small RNAs from insects function as effectors in regulating plant-insect interactions. Here, we report that a microRNA (miR29-b) found in the saliva of phloem-feeding whitefly (Bemisa tabaci) can transfer into the host plant phloem during feeding and fine-tune the defense response of tobacco (Nicotiana tabacum).

View Article and Find Full Text PDF

Dual signal amplification in ECL biosensors: A novel approach for argonaute2 detection using SAHARA CRISPR-Cas12a technology.

Bioelectrochemistry

December 2024

West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China. Electronic address:

Argonaute 2 (Ago2) is a crucial enzyme in the RNA interference (RNAi) pathway, essential for gene silencing via the cleavage of target messenger RNA (mRNA) mediated by microRNA (miRNA) or small interfering RNA (siRNA). The activity of Ago2 is a significant biomarker for various diseases, including cancer and viral infections, necessitating precise monitoring techniques. Traditional methods for detecting Ago2 activity are often cumbersome and lack the necessary sensitivity and specificity for low-abundance targets in complex samples.

View Article and Find Full Text PDF
Article Synopsis
  • A novel biosensing platform has been developed using polystyrene microsphere coding and Argonaute (CbAgo) for highly sensitive detection of multiple targets in public health.
  • The system employs micropore resistance counting and allows for precise decoding through DNA activation, enabling recognition and cleavage of target sequences.
  • This platform shows exceptional sensitivity in detecting mycotoxins and inflammatory markers, highlighting its potential use in clinical diagnostics, food safety, and environmental monitoring.
View Article and Find Full Text PDF

Accurate, sensitive and multiplexed detection of food-borne pathogens is crucial for assessing food safety risks. Here we present a digital DNA-amplification-free nucleic acid detection assay to achieve multiplexed and ultrasensitive detection of three food-borne pathogens. We used mesophilic Clostridium butyricum argonaute and magnetic beads in a digital carrier system (d-MAGIC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!