The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes--even telescopes with four times the diameter of HST--appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system, employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622497 | PMC |
http://dx.doi.org/10.3791/50021 | DOI Listing |
Phys Med Biol
January 2025
National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, JAPAN.
PET has become an important clinical modality but is limited to imaging positron emitters. Recently, PET imaging withZr, which has a half-life of 3 days, has attracted much attention in immuno-PET to visualize immune cells and cancer cells by targeting specific antibodies on the cell surface. However,Zr emits a single gamma ray at 909 keV four times more frequently than positrons, causing image quality degradation in conventional PET.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Memory & Aging Center, Department of Neurology, University of California in San Francisco, San Francisco, CA, USA.
Background: Frontotemporal lobar degeneration (FTLD)- TAR DNA-binding protein 43 (TDP) type C is commonly associated with a clinical diagnosis of semantic dementia (SD). Although anterior temporal lobe (ATL) is one of the primary atrophy centers, it is yet to be defined which other areas are involved in the TDP-type C pathology early in the disease course.
Methods: We included 16 patients with autopsy-confirmed FTLD-TDP type C from the database of the UCSF Memory and Aging Center: 13 patients with semantic variant primary progressive aphasia (svPPA) and predominant left ATL atrophy, and 3 patients with semantic behavioral variant frontotemporal dementia (sbvFTD) and predominant right ATL atrophy.
Purpose Of Review: Peyronie's disease characterizes a condition in which there is angular curvature of the penis. We know that the most patients with Peyronie's disease will not have spontaneous resolution of their penile curvature. As such, patients who desire treatment can elect for either surgical or nonsurgical therapy.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Information Communication, Army Academy of Armored Forces, Beijing, 100072, China.
Generating computer-generated holograms (CGHs) for 3D scenes by learning-based methods can reconstruct arbitrary 3D scenes with higher quality and faster speed. However, the homogenization and difficulty of obtaining 3D high-resolution datasets seriously limit the generalization ability of the model. A novel approach is proposed to train 3D encoding models based on convolutional neural networks (CNNs) using 2D image datasets.
View Article and Find Full Text PDFLight Sci Appl
January 2025
School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa.
Optical metrology is a well-established subject, dating back to early interferometry techniques utilizing light's linear momentum through fringes. In recent years, significant interest has arisen in using vortex light with orbital angular momentum (OAM), where the phase twists around a singular vortex in space or time. This has expanded metrology's boundaries to encompass highly sensitive chiral interactions between light and matter, three-dimensional motion detection via linear and rotational Doppler effects, and modal approaches surpassing the resolution limit for improved profiling and quantification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!