AI Article Synopsis

  • Vitamin D, particularly its active form 1,25-dihydroxyvitamin D, plays a significant role in preventing and treating cancer, specifically colorectal cancer.
  • The enzymes CYP27B1 and CYP24A1, which are influenced by genetic variations (SNPs), regulate the levels of 1,25D in cancer cells, affecting their growth.
  • Understanding how these genetic variations impact vitamin D metabolism could lead to personalized treatment strategies for vitamin D-related health issues and cancer risk assessment.

Article Abstract

Vitamin D is a well-studied agent for cancer chemoprevention and treatment. Its chief circulating metabolite, 25-hydroxyvitamin D, is converted into the active hormone 1,25-dihydroxyvitamin D (1,25D) by the cytochrome P450 enzyme CYP27B1 in kidney and other tissues. 1,25D is then deactivated by CYP24A1 and ultimately catabolized. Colorectal carcinoma cells express CYP27B1 and CYP24A1 that locally regulate 1,25D with potential implications for its impact on carcinogenesis. While 1,25D inhibits cancer growth, the effects of polymorphic variations in genes encoding proteins involved in 1,25D homeostasis are poorly understood. Using an RXR-VDR mammalian two-hybrid (M2H) biologic assay system, we measured vitamin D metabolite uptake and activation of the vitamin D receptor (VDR) pathway in colon cancer cells that expressed one of five CYP27B1 single-nucleotide polymorphisms (SNP) or four CYP24A1 SNPs. Compared with the wild-type control, four of five CYP27B1 SNPs reduced enzymatic activity, whereas one (V166L) increased activity. For CYP24A1, all tested SNPs reduced enzyme activity. Quantitative real-time PCR analyses supported the results of M2H experiments. The observed SNP-directed variation in CYP functionality indicated that vitamin D homeostasis is complex and may be influenced by genetic factors. A comprehensive understanding of 1,25D metabolism may allow for a more personalized approach toward treating vitamin D-related disorders and evaluating risk for carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630267PMC
http://dx.doi.org/10.1158/0008-5472.CAN-12-4134DOI Listing

Publication Analysis

Top Keywords

colon cancer
8
cancer cells
8
snps reduced
8
vitamin
6
125d
6
cyp24a1
5
cyp24a1 cyp27b1
4
cyp27b1 polymorphisms
4
polymorphisms modulate
4
modulate vitamin
4

Similar Publications

Background: The present study aimed to comprehensively evaluate the anticancer, anti-inflammatory, and antioxidant properties of Globularia cordifolia L.

Samples: The plant material was collected and extracted using the maceration method. Antioxidant activities were assessed through DPPH (i.

View Article and Find Full Text PDF

Background: Studies have reported clinical heterogeneity between right-sided colon cancer (RCC) and left-sided colon cancer (LCC). However, none of these studies used multi-omics analysis combining genetic regulation, microbiota, and metabolites to explain the site-specific difference.

Methods: Here, 494 participants from a 16S rRNA gene sequencing cohort (50 RCC, 114 LCC, and 100 healthy controls) and a multi-omics cohort (63 RCC, 79 LCC, and 88 healthy controls) were analyzed.

View Article and Find Full Text PDF

Background: Sepsis represents the most prevalent infectious complication and the primary cause of mortality in myeloproliferative neoplasms (MPN). The risk of sepsis and the difficulty of treatment are significantly increased in MPN patients due to the need for immunomodulators and antibiotics.

Case Presentation: On June 9, 2023, a 69-year-old male was admitted to the hospital.

View Article and Find Full Text PDF

Background: The Peritoneal Cancer Index (PCI), calculated intraoperatively, has previously yielded mixed results when correlated with computed tomography. This study aimed to quantify variation in this scoring method comparing radiologists' and surgeons' radiologic PCI (rPCI) assessment.

Methods: The rPCI of 104 patients treated at a single institution for peritoneal carcinomatosis was calculated by an abdominal radiologist and a surgeon.

View Article and Find Full Text PDF

Potent prophylactic cancer vaccines harnessing surface antigens shared by tumour cells and induced pluripotent stem cells.

Nat Biomed Eng

December 2024

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China.

The development of prophylactic cancer vaccines typically involves the selection of combinations of tumour-associated antigens, tumour-specific antigens and neoantigens. Here we show that membranes from induced pluripotent stem cells can serve as a tumour-antigen pool, and that a nanoparticle vaccine consisting of self-assembled commercial adjuvants wrapped by such membranes robustly stimulated innate immunity, evaded antigen-specific tolerance and activated B-cell and T-cell responses, which were mediated by epitopes from the abundant number of antigens shared between the membranes of tumour cells and pluripotent stem cells. In mice, the vaccine elicited systemic antitumour memory T-cell and B-cell responses as well as tumour-specific immune responses after a tumour challenge, and inhibited the progression of melanoma, colon cancer, breast cancer and post-operative lung metastases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!