In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575075PMC
http://dx.doi.org/10.3389/fnins.2013.00011DOI Listing

Publication Analysis

Top Keywords

neuromorphic computing
8
computing substrate
8
neural networks
8
networks universal
4
universal neuromorphic
4
substrate study
4
study highly
4
highly configurable
4
configurable neuromorphic
4
substrate emulating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!