A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor.

Nat Chem

Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Drive East, Los Angeles, California 90095, USA.

Published: March 2013

Basic fibroblast growth factor (bFGF) is a protein that plays a crucial role in diverse cellular functions, from wound healing to bone regeneration. However, a major obstacle to the widespread application of bFGF is its inherent instability during storage and delivery. Here, we describe the stabilization of bFGF by covalent conjugation with a heparin-mimicking polymer, a copolymer consisting of styrene sulfonate units and methyl methacrylate units bearing poly(ethylene glycol) side chains. The bFGF conjugate of this polymer retained bioactivity after synthesis and was stable to a variety of environmentally and therapeutically relevant stressors--such as heat, mild and harsh acidic conditions, storage and proteolytic degradation--unlike native bFGF. Following the application of stress, the conjugate was also significantly more active than the control conjugate system in which the styrene sulfonate units were omitted from the polymer structure. This research has important implications for the clinical use of bFGF and for the stabilization of heparin-binding growth factors in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579505PMC
http://dx.doi.org/10.1038/nchem.1573DOI Listing

Publication Analysis

Top Keywords

heparin-mimicking polymer
8
basic fibroblast
8
fibroblast growth
8
growth factor
8
styrene sulfonate
8
sulfonate units
8
bfgf
6
conjugate
4
polymer conjugate
4
conjugate stabilizes
4

Similar Publications

Circulating histones have been identified as essential mediators that lead to hyperinflammation, platelet aggregation, coagulation cascade activation, endothelial cell injury, multiple organ dysfunction, and death in severe patients with sepsis, multiple trauma, COVID-19, acute liver failure, and pancreatitis. Clinical evidence suggests that plasma levels of circulating histones are positively associated with disease severity and survival in patients with such critical diseases. However, safe and efficient therapeutic strategies targeting circulating histones are lacking in current clinical practice.

View Article and Find Full Text PDF

Improved design to imitate natural vascular scaffolds is critical in vascular tissue engineering (VTE). Smooth muscle cells originating from surrounding tissues require larger pore sizes relative to those of endothelial progenitor cells found in the bloodstream. Furthermore, biofunctionalized scaffolds mimic the microenvironment, cellular function, and tissue morphogenesis.

View Article and Find Full Text PDF

Effect of Structural Elements of Heparin-Mimicking Polymers on Vascular Cell Distribution and Functions: Chemically Homogeneous or Heterogeneous?

ACS Biomater Sci Eng

September 2023

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China.

Heparin-mimicking polymers (HMPs) are artificially synthesized alternatives to heparin with comparable regulatory effects on protein adsorption and cell behavior. By introducing two major structural elements of HMPs (sulfonate- and glyco-containing units) to different areas of material surfaces, heterogeneous surfaces patterned with different HMPs and homogeneous surfaces patterned with the same HMPs can be obtained. In this work, heterogeneous HMP-patterned poly(dimethylsiloxane) (PDMS) surfaces with sulfonate-containing polySS (pS) and glyco-containing polyMAG (pM) distributed in circular patterns (with a diameter of 300 μm) were prepared (S-M and M-S).

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have a potential application in blood purification, but their microcrystalline nature has hampered their industrial application. Here, novel MOFs-polymer beads based on UiO, sodium alginate, polyacrylic acid, and poly (ethylene imine) were prepared and applied as a whole blood hemoadsorbent for the first time. The amidation among polymers immobilized UiO66-NH into the network of the optimal product (SAP-3), and the NH of UiO66-NH significantly increased the removal rate (70 % within 5 min) of SAP-3 on bilirubin.

View Article and Find Full Text PDF

Heparin-mimicking polymer-based hydrogel matrix regulates macrophage polarization by controlling cell adhesion.

Biochem Biophys Res Commun

January 2023

Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungcheongnam-do, 31538, Republic of Korea. Electronic address:

The physicochemical properties of biomaterials influence cell adhesion, shape, and polarization of macrophages. In this study, we aimed to evaluate the polarization of macrophages in terms of the regulation of cell adhesion and how synthetic mimics for heparin and poly(sodium-4-styrenesulfonate) can regulate macrophage polarization by modulating cell shape, focal adhesion, cell traction force, and intracellular tension. Our initial findings showed that macrophages cultured with heparin-mimicking polymer-based hydrogel matrix showed reduced expression of cell adhesion markers such as integrins, vinculin, RhoA, and ROCK1/2 and reduced cell shape, elongation, cell-matrix traction force, and intracellular tension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!