AI Article Synopsis

Article Abstract

A clear understanding of the factors controlling the deposition behavior of engineered nanoparticles (ENPs), such as quantum dots (QDs), is necessary for predicting their transport and fate in natural subsurface environments and in water filtration processes. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the effect of particle surface coatings and water chemistry on the deposition of commercial QDs onto Al2O3. Two carboxylated QDs (CdSe and CdTe) with different surface coatings were compared with two model nanoparticles: sulfate-functionalized (sPL) and carboxyl-modified (cPL) polystyrene latex. Deposition rates were assessed over a range of ionic strengths (IS) in simple electrolyte (KCl) and in electrolyte supplemented with two organic molecules found in natural waters; namely, humic acid and rhamnolipid. The Al2O3 collector used here is selected to be representative of oxide patches found on the surface of aquifer or filter grains. Deposition studies showed that ENP deposition rates on bare Al2O3 generally decreased with increasing salt concentration, with the exception of the polyacrylic-acid (PAA) coated CdTe QD which exhibited unique deposition behavior due to changes in the conformation of the PAA coating. QD deposition rates on bare Al2O3 were approximately 1 order of magnitude lower than those of the polystyrene latex nanoparticles, likely as a result of steric stabilization imparted by the QD surface coatings. Adsorption of humic acid or rhamnolipid on the Al2O3 surface resulted in charge reversal of the collector and subsequent reduction in the deposition rates of all ENPs. Moreover, the ratio of the two QCM-D output parameters, frequency and dissipation, revealed key structural information of the ENP-collector interface; namely, on bare Al2O3, the latex particles were rigidly attached as compared to the more loosely attached QDs. This study emphasizes the importance of considering the nature of ENP coatings as well as organic molecule adsorption onto particle and collector surfaces to avoid underestimating ENP mobility in natural and engineered aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es303392vDOI Listing

Publication Analysis

Top Keywords

deposition rates
16
polystyrene latex
12
surface coatings
12
bare al2o3
12
deposition
9
quantum dots
8
latex nanoparticles
8
water chemistry
8
deposition behavior
8
humic acid
8

Similar Publications

Atmospheric Deposition of Microplastics in South Central Appalachia in the United States.

ACS EST Air

January 2025

Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

Due to the increased prevalence of plastic pollution globally, atmospheric deposition of microplastics (MPs) is a significant issue that needs to be better understood to identify potential consequences for human health. This study is the first to quantify and characterize atmospheric MP deposition in the Eastern United States. Passive sampling was conducted at two locations within the Eastern United States, specifically in remote South Central Appalachia, from March to September 2023.

View Article and Find Full Text PDF

Defect-Mediated Crystallization of the Particulate TiO Photocatalyst Grown by Atomic Layer Deposition.

J Phys Chem C Nanomater Interfaces

January 2025

Surface Science Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland.

Nanopowders or films of pure and mixed oxides in nanoparticulate form have gained specific interest due to their applicability in functionalizing high-surface-area substrates. Among various other applications, our presented work primarily focuses on the behavior of TiO as a photocatalyst deposited by atomic layer deposition (ALD) on a quartz particle. The photocatalytic activity of TiO on quartz particles grown by ALD was studied in terms of ALD growth temperature and post-treatment heating rate.

View Article and Find Full Text PDF

Atmospheric corrosion of carbon and galvanized steel under high rainfall conditions.

Heliyon

January 2025

Grupo de Investigación en Energías Renovables y Meteorología-GIERMET, Universidad Tecnológica del Chocó, Cra 22 No 18b -10, Quibdó, Colombia.

The corrosion rates of carbon steel and galvanized steel according to the ISO 9223 standard, the effect of pollutant contamination and atmospheric aggressiveness under high rainfall conditions in the Chocó department were studied. Carbon and galvanized steel samples, chloride, and sulfur collectors were exposed in three atmospheric stations in three strategic positions covering the Colombian Pacific: Quibdó, Andagoya and Bahía Solano, for different exposure periods (up to 18 months). The structural-micro characterization of corrosion products was evaluated via X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy SEM-EDS.

View Article and Find Full Text PDF

The cuticle, an extracellular hydrophobic layer impregnated with waxy lipids, serves as the primary interface between plant leaves and their environment and is thus subject to external cues. A previous study on poplar leaves revealed that environmental conditions outdoors promoted the deposition of about 10-fold more cuticular wax compared to the highly artificial climate of a growth chamber. Given that light was the most significant variable distinguishing the two locations, we hypothesized that the quantity of light might serve as a key driver of foliar wax accumulation.

View Article and Find Full Text PDF

A comprehensive genome-wide association study (GWAS) has validated the identification of the Plexin-A 4 (PLXNA4) gene as a novel susceptibility factor for Alzheimer's disease (AD). Nonetheless, the precise role of PLXNA4 gene polymorphisms in the pathophysiology of AD remains to be established. Consequently, this study is aimed at exploring the relationship between PLXNA4 gene polymorphisms and neuroimaging phenotypes intimately linked to AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!