A comprehensive understanding of the pathology of spinal cord injury (SCI) in non-human primates may facilitate greatly the development of new strategies to promote recovery in humans with SCI. Relatively few studies, however, have been conducted to systemically examine pathological changes in the monkey, a non-human primate, after SCI. We report axonal, glial, and fibrotic responses in the spinal cord of monkey Macaca fascicularis after a thoracic (T) 8-9 lateral hemisection. We examined these changes at three regions--i.e., the lesion epicenter, the peri-lesion area, and the lateral white matter of the intact, contralateral hemicord at 7 (subacute) and 30 (early chronic) days post-injury. The lateral hemisection resulted in a marked axon and myelin loss, along with tissue loss, at the lesion epicenter at both time points. Unexpectedly, axonal loss and myelin degeneration, along with reactive gliosis and microglia/macrophages activation, were also observed in the contralateral spared hemicord, indicating a spread of the initial damage to the contralateral side. In addition, activated microglia/macrophages were found both within the injury epicenter and the peri-lesion area, indicating that they participate in injury-induced immune responses that may exacerbate the secondary damage. In contrast to rodents, substantial reactive astrocytic responses at the lesion border were not observed in the monkey. Conversely, a deposit of robust fibrotic scar was observed at the injury epicenter, which filled the space originally created by the hemisection. Thus, understanding the pathology of monkey SCI may provide clinically relevant information in designing repair strategies targeting specific problems associated with human SCIs.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2012.2681DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
axonal glial
8
macaca fascicularis
8
understanding pathology
8
lateral hemisection
8
lesion epicenter
8
epicenter peri-lesion
8
peri-lesion area
8
injury epicenter
8
monkey
5

Similar Publications

Comprehensive Analysis Reveals the Potential Diagnostic Value of Biomarkers Associated With Aging and Circadian Rhythm in Knee Osteoarthritis.

Orthop Surg

January 2025

Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.

Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.

View Article and Find Full Text PDF

Holocord syringomyelia in 18 dogs.

Front Vet Sci

January 2025

Pride Veterinary Referrals, IVC Evidensia Group, Derby, United Kingdom.

Holocord syringomyelia (HSM) is characterized by a continuous spinal cord cavitation along its entire length and is currently poorly documented in dogs. This retrospective multicentric case series investigates the clinical and MRI findings in 18 dogs with HSM. The median age at presentation was 82 months (range 9-108 months) and French Bulldogs were overrepresented (50%).

View Article and Find Full Text PDF

Background: Patients with cervical spinal cord injuries (CSCIs) have a high incidence of respiratory complications. The effectiveness of non-invasive positive pressure ventilation (NPPV) in preventing respiratory complications such as pneumonia in acute CSCIs remains unclear. We evaluated whether intermittent NPPV (iNPPV) could prevent pneumonia in patients with acute CSCIs.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS.

View Article and Find Full Text PDF

Maintenance of neural progenitors requires Notch signaling in vertebrate development. Previous study has shown that Jagged2-mediated Notch signaling maintains proliferating neural progenitors in the ventral spinal cord. However, components for Jagged-mediated signaling remain poorly defined during late neurogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!