Single-axonal organelle analysis method reveals new protein-motor associations.

ACS Chem Neurosci

Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA.

Published: February 2013

AI Article Synopsis

Article Abstract

Axonal transport of synaptic vesicle proteins is required to maintain neurons' ability to communicate via synaptic transmission. Neurotransmitter-containing synaptic vesicles are assembled at synaptic terminals via highly regulated endocytosis of membrane proteins. These synaptic vesicle membrane proteins are synthesized in the cell body and transported to synapses in carrier vesicles that make their way down axons via microtubule-based transport utilizing kinesin molecular motors. Identifying the cargos that each kinesin motor protein carries from the cell bodies to the synapse is key to understanding both diseases caused by motor protein dysfunction and how synaptic vesicles are assembled. However, obtaining a bulk sample of axonal transport complexes from central nervous system (CNS) neurons to use for identification of their contents has posed a challenge to researchers. To obtain axonal carrier vesicles from primary cultured neurons, we fabricated a microfluidic chip designed to physically isolate axons from dendrites and cell bodies and developed a method to remove bulk axonal samples and label their contents. Synaptic vesicle protein carrier vesicles in these samples were labeled with antibodies to the synaptic vesicle proteins p38, SV2A, and VAMP2, and the anterograde axonal transport motor KIF1A, after which antibody overlap was evaluated using single-organelle TIRF microscopy. This work confirms a previously discovered association between KIF1A and p38 and shows that KIF1A also transports SV2A- and VAMP2-containing carrier vesicles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751541PMC
http://dx.doi.org/10.1021/cn300136yDOI Listing

Publication Analysis

Top Keywords

synaptic vesicle
16
carrier vesicles
16
axonal transport
12
synaptic
8
vesicle proteins
8
synaptic vesicles
8
vesicles assembled
8
membrane proteins
8
motor protein
8
cell bodies
8

Similar Publications

The roles and therapeutic potential of exosomal non-coding RNAs in microglia-mediated intercellular communication.

Int Immunopharmacol

January 2025

School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China. Electronic address:

Exosomes, which are small extracellular vesicles (sEVs), serve as versatile regulators of intercellular communication in the progression of various diseases, including neurological disorders. Among the diverse array of cargo they carry, non-coding RNAs (ncRNAs) play key regulatory roles in various pathophysiological processes. Exosomal ncRNAs derived from distinct cells modulate their reciprocal crosstalk locally or remotely, thereby mediating neurological diseases.

View Article and Find Full Text PDF

Brivaracitam Ameliorates Increased Inflammation, Oxidative Stress, and Acetylcholinesterase Activity in Ischemic Mice.

Clin Psychopharmacol Neurosci

February 2025

Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India.

Objective: Cerebral ischemia is a medical condition that occurs due to poor supply of blood in the brain. Reperfusion being savage further exaggerates the tissue injury causing cerebral ischemia/reperfusion injury (CI/R). CI/R is marked by an impairment in release of neurotransmitter, excitotoxicity, oxidative stress, inflammation, and neuronal apoptosis.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.

View Article and Find Full Text PDF

Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.

View Article and Find Full Text PDF

Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!