Hypervalent iodine(III)-promoted intermolecular C-C coupling of vindoline with β-ketoesters and related substrates.

Org Lett

Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.

Published: March 2013

The regioselective intermolecular coupling reaction of vindoline with a wide range of substrates including β-ketoesters, β-diketones, β-ketoaldehydes, β-ketonitriles, malononitriles, and β-cyanoesters provides an opportunity for the synthesis of vinblastine analogues containing deep-seated changes in the upper velbanamine subunit. The transition-metal-free hypervalent iodine(III)-promoted intermolecular sp(3)/sp(2) coupling, representing a special class of selective C-H activation with direct carbon-carbon bond formation, proceeds with generation of a quaternary center capable of incorporation of the vinblastine C16' methyl ester and functionalized for subsequent divergent heterocycle introduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607625PMC
http://dx.doi.org/10.1021/ol400135nDOI Listing

Publication Analysis

Top Keywords

hypervalent iodineiii-promoted
8
iodineiii-promoted intermolecular
8
intermolecular c-c
4
c-c coupling
4
coupling vindoline
4
vindoline β-ketoesters
4
β-ketoesters substrates
4
substrates regioselective
4
regioselective intermolecular
4
intermolecular coupling
4

Similar Publications

We have developed transition-metal-free synthetic methodologies for dibenzoxazepinones utilizing salicylamides as starting materials and employing two distinct types of successive hypervalent iodine-mediated arylocyclizations. This synthetic protocol encompasses selective phenol -arylation of salicylamides with diaryliodonium salts, followed by electrophilic aromatic amination utilizing chemically or electronically generated hypervalent iodine reagents in the second stage of the process.

View Article and Find Full Text PDF

The 2-(4-hydroxyphenoxy)benzamide scaffold is frequently found in a variety of bioactive compounds, displaying a broad spectrum of properties, such as antibacterial and antitumor effects. In this study, we developed a new method for synthesizing 2-(4-hydroxyphenoxy)benzamide derivatives from 2-aryloxybenzamide via a PhIO-mediated oxidation reaction. The optimal reaction conditions were established as follows: TFA was used as the solvent, PhIO served as the oxidant with a substrate-to-oxidant ratio of 1:2, and the reaction was conducted at room temperature.

View Article and Find Full Text PDF

The reactivity of our recently disclosed hypervalent iodine reagents (HIRs) bearing a benzylamine with in situ-generated sulfenate salts was investigated. Under the studied conditions sulfonamides have been obtained in up to 52% yield. This reaction has been extended to a variety of HIRs and sulfenate salts to explore the different reactivity of these new reagents.

View Article and Find Full Text PDF

Program-Modulated Kinetics of Perovskite-Film Growth by Molecular "Thruster" for High-Efficiency and Stable Perovskite Solar Cells.

Angew Chem Int Ed Engl

December 2024

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.

The rapid reaction between lead iodide (PbI) and formamidinium iodide (FAI) complicates the fabrication of high-quality formamidinium lead iodide (FAPbI) films. Conventional methods, such as using nonvolatile small molecular additives to slow the reaction, often result in buried interfacial voids and molecule diffusion, compromising the devices' operational stability. In this study, we introduced a molecular "thruster"-a hypervalent iodine (III) compound with three carbonyl groups and a C-I bond-that possesses coordination and dissociation abilities, enabling programed modulation of perovskite-film growth kinetics.

View Article and Find Full Text PDF

Hypervalent Iodine-Mediated Synthesis of Steroidal 5/5-Spiroiminals.

Molecules

December 2024

The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA.

The hypervalent iodine-mediated formation of steroidal 5/5-spiroiminals and 5/5-spiroaminals from steroidal amines is presented. Under the influence of excess PhI(OAc) and iodine in acetonitrile at 0 °C, steroidal amines smoothly underwent cyclization to give a mixture of 5/5-spiroiminals and 5/5-spiroaminals. This reaction represents the first example of a C-H-activation-mediated formation of a spiroiminal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!