In this work, we carried out chemical oxidation studies of nitrogen-doped multiwalled carbon nanotubes (CNx-MWCNTs) using potassium permanganate in order to obtain nitrogen-doped graphene nanoribbons. Reaction parameters such as oxidation reaction, reaction time, the oxidizer to nanotube mass ratio, and the temperature were varied, and their effect was carefully analyzed. The presence of nitrogen atoms makes CNx-MWCNTs more reactive toward oxidation when compared to undoped multiwalled carbon nanotubes (MWCNTs). High-resolution transmission electron microscopy studies indicate that the oxidation of the graphitic layers within CNx-MWCNTs results in the unzipping of large diameter nanotubes and the formation of a disordered oxidized carbon coating on small diameter nanotubes. The nitrogen content within unzipped CNx-MWCNTs decreased as a function of the oxidation time, temperature, and oxidizer concentration. By controlling the degree of oxidation, the N atomic % could be reduced from 1.56% in pristine CNx-MWCNTs down to 0.31 atom % in nitrogen-doped oxidized graphene nanoribbons. A comparative thermogravimetric analysis reveals a lower thermal stability of the (unzipped) oxidized CNx-MWCNTs when compared to MWCNT samples. The oxidized graphene nanoribbons were chemically and thermally reduced and yielded nitrogen-doped graphene nanoribbons (N-GNRs). The thermal reduction at relatively low temperature (300 °C) results in graphene nanoribbons with 0.37 atom % of nitrogen. This method represents a novel route to preparation of bulk quantities of nitrogen-doped unzipped carbon nanotubes, which is able to control the doping level in the resulting reduced GNR samples. Finally, the electrochemical properties of these materials were evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn305179b | DOI Listing |
J Hazard Mater
January 2025
Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China. Electronic address:
Electronic mediators are an effective means of enhancing the efficiency of microbial electrochemical electron transfer; however, there are still gaps in understanding the strengthening mechanisms and the efficiency of removing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). This study systematically elucidates the effects of various electron mediators on bioelectrochemical processes, electron transfer efficiency, and the underlying mechanisms that inhibit ARG propagation within sediment microbial fuel cell systems (SMFCs). The results indicate that the addition of electron mediators significantly increased the output voltage (33.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Physics Postgraduate Program, Institute of Physics, University of Brasília, 70910-900 Brasília-DF, Brazil.
Two-dimensional (2D) nanomaterials are at the forefront of potential technological advancements. Carbon-based materials have been extensively studied since synthesizing graphene, which revealed properties of great interest for novel applications across diverse scientific and technological domains. New carbon allotropes continue to be explored theoretically, with several successful synthesis processes for carbon-based materials recently achieved.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Food Technology, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
Arsenic (As) contamination in groundwater has become a global concern, and it poses a serious threat to the health of millions of people. Groundwater with high As concentrations has been reported worldwide. It is widely recognized that the toxicity of As largely depends on its chemical forms, making As speciation a critical issue.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Physics, Hasanuddin University, Makassar 90245, Indonesia. Electronic address:
The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!