NADPH diaphorase expression in superior colliculus of developing, aging and visually deafferented rats.

Ital J Anat Embryol

Department of Anatomy, Pharmacology and Forensic Medicine, University of Torino, Italy.

Published: March 2013

We have studied the development of NADPH-diaphorase activity in the retinorecipient layers of the superior colliculus (SC) in rats from embryonic day 17 to adulthood, during aging, and following neonatal tetrodotoxin injection or unilateral eye removal in the neonatal or in the adult animal. In the superficial SC, NADPH-d activity is first seen in neurons on postnatal day (P) 4; over the next two weeks, enzyme expression increases gradually, in cells as well as in the neuropil. By P12-14, around the time of eye opening, NADPH-d reactivity increases dramatically. In parallel, the dendrites of many NADPH-d-positive neurons in the superficial gray layer, more or less randomly distributed at first, gradually align their orientation relative to the dorsoventral axis. The pattern of NADPH-d activity in the superficial layers of the SC (i.e. stratum griseum superficiale and stratum opticum) is adult-like by the fourth week of age. Deafferentation of the superficial SC, both in the neonatal and adult rat, and block of retinal activity lead to reduction in the size of the SC and changes in NADPH-d-positive neurons, including dendrite misorientation, decreased cell size and reduced number. Some of these changes are seen also in the aging animal. These results document a protracted and progressive increase in the development of NADPH-d expression in the SC. Our results suggest a strong influence of retinal afferents and activity on the development and maintenance of NAPHD-positive neurons in the retinorecipient layers of the SC, where NO can act as a retrograde signal to carve the terminal arbors of retinal axons.

Download full-text PDF

Source

Publication Analysis

Top Keywords

superior colliculus
8
retinorecipient layers
8
neonatal adult
8
nadph-d activity
8
nadph-d-positive neurons
8
activity
5
nadph diaphorase
4
diaphorase expression
4
expression superior
4
colliculus developing
4

Similar Publications

Prepulse inhibition (PPI) refers to the phenomenon in which a weak sensory stimulus before a strong one significantly reduces the startle reflex caused by the strong stimulus. Perceptual spatial separation, a phenomenon where auditory cues from the prepulse and background noise are distinguished in space, has been shown to enhance PPI. This study aims to investigate the neural modulation mechanisms of PPI by the spatial separation between the prepulse stimulus and background noise, particularly in the deep superior colliculus (deepSC).

View Article and Find Full Text PDF

The superior colliculus directs goal-oriented forelimb movements.

Cell Rep

December 2024

Centre for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka 560012, India. Electronic address:

Skilled forelimb control is essential for daily living, yet our understanding of its neural mechanisms, although extensive, remains incomplete. Here, we present evidence that the superior colliculus (SC), a major midbrain structure, is necessary for accurate forelimb reaching in mice. We found that neurons in the lateral SC are active during goal-directed reaching, and by employing chemogenetic and phase-specific optogenetic silencing of these neurons, we show that the SC causally facilitates reach accuracy.

View Article and Find Full Text PDF

The accumulation of abnormal phosphorylated Tau protein (pTau) in neurons of the brain is a pathological hallmark of Alzheimer's disease (AD). PTau pathology also occurs in the retina of AD cases. Accordingly, questions arise whether retinal pTau can act as a potential seed for inducing cerebral pTau pathology and whether retinal pTau pathology causes degeneration of retinal neurons.

View Article and Find Full Text PDF

Lab rodent species commonly used to study the visual system and its development (hamsters, rats, and mice) are crepuscular/nocturnal, altricial, and possess simpler visual systems than carnivores and primates. To widen the spectra of studied species, here we introduce an alternative model, the Chilean degu (). This diurnal, precocial Caviomorph rodent has a cone enriched, well-structured retina, and well-developed central visual projections.

View Article and Find Full Text PDF

Transcorneal electrical stimulation restores DNA methylation changes in retinal degeneration.

Front Mol Neurosci

December 2024

Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.

Background: Retinal degeneration is a major cause of irreversible blindness. Stimulation with controlled low-level electrical fields, such as transcorneal electrical stimulation (TES), has recently been postulated as a therapeutic strategy. With promising results, there is a need for detailed molecular characterization of the therapeutic effects of TES.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!