Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development.

J Cell Biol

Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Published: February 2013

Alternative premRNA splicing is a major mechanism to generate diversity of gene products. However, the biological roles of alternative splicing during development remain elusive. Here, we focus on a neuron-specific RNA-binding protein, Rbfox3, recently identified as the antigen of the widely used anti-NeuN antibody. siRNA-mediated loss-of-function studies using the developing chicken spinal cord revealed that Rbfox3 is required to promote neuronal differentiation of postmitotic neurons. Numb premRNA encoding a signaling adaptor protein was found to be a target of Rbfox3 action, and Rbfox3 repressed the inclusion of an alternative exon via binding to the conserved UGCAUG element in the upstream intron. Depleting a specific Numb splice isoform reproduced similar neuronal differentiation defects. Forced expression of the relevant Numb splice isoform was sufficient to rescue, in an isoform-specific manner, postmitotic neurons from defects in differentiation caused by Rbfox3 depletion. Thus, Rbfox3-dependent Numb alternative splicing plays an important role in the progression of neuronal differentiation during vertebrate development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575530PMC
http://dx.doi.org/10.1083/jcb.201206146DOI Listing

Publication Analysis

Top Keywords

neuronal differentiation
16
alternative splicing
12
postmitotic neurons
8
numb splice
8
splice isoform
8
numb
5
differentiation
5
rbfox3
5
rbfox3-regulated alternative
4
splicing
4

Similar Publications

Some animals can regenerate large missing regions of their nervous system, requiring mechanisms to restore the pattern, numbers, and wiring of diverse neuron classes. Because injuries are unpredictable, regeneration must be accomplished from an unlimited number of starting points. Coordinated regeneration of neuron-glia architecture is thus a major challenge and remains poorly understood.

View Article and Find Full Text PDF

Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.

View Article and Find Full Text PDF

Background: Itch is a common clinical sign in skin disorders. While the neural pathways of itch transmission from the skin to the brain are well understood in rodents, the same pathways in dogs remain unclear. The knowledge gap hinders the development of effective treatments for canine itch-related disorders.

View Article and Find Full Text PDF

Unlabelled: Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation are shaped by the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice expressing channelrhodopsin-2 in L6CT neurons.

View Article and Find Full Text PDF

Gamma oscillations are disrupted in various neurological disorders, including Alzheimer's disease (AD). In AD mouse models, non-invasive audiovisual stimulation (AuViS) at 40 Hz enhances gamma oscillations, clears amyloid-beta, and improves cognition. We investigated mechanisms of circuit remodeling underlying these restorative effects by leveraging the sensitivity of hippocampal neurogenesis to activity in middle-aged wild-type mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!