Objectives: In November 2008, a study was performed with support from the European Centre for Disease Prevention and Control (ECDC) to obtain an overview of Clostridium difficile infections (CDIs) in European hospitals. A collection of 398 C. difficile isolates obtained from this hospital-based survey was utilized to identify antimicrobial susceptibility patterns of common C. difficile PCR ribotypes across Europe.

Methods: The MICs of three approved therapeutic agents (vancomycin, metronidazole and fidaxomicin) and LFF571 (a novel semi-synthetic thiopeptide antibiotic) were determined by the agar dilution method.

Results: MICs of fidaxomicin and LFF571 were in general 2-4-fold lower than those of vancomycin and metronidazole. Isolates belonging to clade 2, including the hypervirulent ribotype 027, had one-dilution higher MIC50 and MIC90 values for fidaxomicin and metronidazole, whereas similar MIC values were observed for vancomycin and LFF571. Isolates belonging to C. difficile PCR ribotype 001 were more susceptible to fidaxomicin than other frequently found PCR ribotypes 014/020 and 078. Six isolates from three different countries had a metronidazole MIC of 2 mg/L. Four of the six isolates were characterized as PCR ribotype 001.

Conclusions: There was no evidence of in vitro resistance of C. difficile to any of the four agents tested. However, the results suggest type-specific differences in susceptibility for the treatment agents we investigated. Continuous surveillance of C. difficile isolates in Europe is needed to determine the possible clinical implications of ribotype-specific changes in susceptibility to therapeutic agents.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkt013DOI Listing

Publication Analysis

Top Keywords

difficile isolates
12
treatment agents
8
clostridium difficile
8
difficile pcr
8
pcr ribotypes
8
therapeutic agents
8
vancomycin metronidazole
8
fidaxomicin lff571
8
isolates belonging
8
metronidazole mic
8

Similar Publications

Whole genome sequencing characterization of Clostridioides difficile from Bulgaria during the COVID-19 pandemic.

Diagn Microbiol Infect Dis

January 2025

National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria.

Increased incidence of Clostridioides difficile infections were documented in Bulgarian hospitals during COVID-19. WGS was performed on 39 isolates from seven hospitals during 2015-2022. Antimicrobial resistance and toxin genes were inferred from genomes.

View Article and Find Full Text PDF

Fecal microbiota changes associated with pathogenic and non-pathogenic diarrheas in foals.

BMC Res Notes

January 2025

Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA.

Objectives: Diarrhea is a common disease that could threaten the welfare of newborn foals. While there are several forms of foal diarrhea, the etiologies can be considered known pathogenic or non-pathogenic in nature. Moreover, there are likely differences in the composition of microbial populations in the gastrointestinal tracts of foals depending upon the etiology of diarrhea.

View Article and Find Full Text PDF

infection (CDI), characterized by colitis and diarrhea, afflicts approximately half a million people in the USA every year, burdening both individuals and the healthcare system. 630Δ is an erythromycin-sensitive variant of the clinical isolate 630 and is commonly used in the research community due to its genetic tractability. 630Δ possesses a point mutation in , an autoregulated transcriptional repressor that regulates oxidative stress resistance genes.

View Article and Find Full Text PDF

Unlabelled: infections (CDI) cause almost 300,000 hospitalizations per year of which ~15-30% are the result of recurring infections. The prevalence and persistence of CDI in hospital settings has resulted in an extensive collection of clinical isolates and their classification, typically by ribotype. While much of the current literature focuses on one or two prominent ribotypes (.

View Article and Find Full Text PDF

Subspecies phylogeny in the human gut revealed by co-evolutionary constraints across the bacterial kingdom.

Cell Syst

January 2025

Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA. Electronic address:

The human gut microbiome contains many bacterial strains of the same species ("strain-level variants") that shape microbiome function. The tremendous scale and molecular resolution at which microbial communities are being interrogated motivates addressing how to describe strain-level variants. We introduce the "Spectral Tree"-an inferred tree of relatedness built from patterns of co-evolutionary constraint between greater than 7,000 diverse bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!