A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MOG1 rescues defective trafficking of Na(v)1.5 mutations in Brugada syndrome and sick sinus syndrome. | LitMetric

MOG1 rescues defective trafficking of Na(v)1.5 mutations in Brugada syndrome and sick sinus syndrome.

Circ Arrhythm Electrophysiol

Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

Published: April 2013

Background: Loss-of-function mutations in Na(v)1.5 cause sodium channelopathies, including Brugada syndrome, dilated cardiomyopathy, and sick sinus syndrome; however, no effective therapy exists. MOG1 increases plasma membrane (PM) expression of Na(v)1.5 and sodium current (I(Na)) density, thus we hypothesize that MOG1 can serve as a therapeutic target for sodium channelopathies.

Methods And Results: Knockdown of MOG1 expression using small interfering RNAs reduced Na(v)1.5 PM expression, decreased I(Na) densities by 2-fold in HEK/Na(v)1.5 cells and nearly abolished I(Na) in mouse cardiomyocytes. MOG1 did not affect Na(v)1.5 PM turnover. MOG1 small interfering RNAs caused retention of Na(v)1.5 in endoplasmic reticulum, disrupted the distribution of Na(v)1.5 into caveolin-3-enriched microdomains, and led to redistribution of Na(v)1.5 to noncaveolin-rich domains. MOG1 fully rescued the reduced PM expression and I(Na) densities by Na(v)1.5 trafficking-defective mutation D1275N associated with sick sinus syndrome/dilated cardiomyopathy/atrial arrhythmias. For Brugada syndrome mutation G1743R, MOG1 restored the impaired PM expression of the mutant protein and restored I(Na) in a heterozygous state (mixture of wild type and mutant Na(v)1.5) to a full level of a homozygous wild-type state.

Conclusions: Use of MOG1 to enhance Na(v)1.5 trafficking to PM may be a potential personalized therapeutic approach for some patients with Brugada syndrome, dilated cardiomyopathy, and sick sinus syndrome in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633223PMC
http://dx.doi.org/10.1161/CIRCEP.111.000206DOI Listing

Publication Analysis

Top Keywords

brugada syndrome
16
sick sinus
16
sinus syndrome
12
nav15
11
mog1
9
nav15 sodium
8
syndrome dilated
8
dilated cardiomyopathy
8
cardiomyopathy sick
8
small interfering
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!