An electrochemical study of Au electrodes electrografted with azobenzene (AB), Fast Garnet GBC (GBC) and Fast Black K (FBK) diazonium compounds is presented. Electrochemical quartz crystal microbalance, ellipsometry and atomic force microscopy investigations reveal the formation of multilayer films. The elemental composition of the aryl layers is examined by X-ray photoelectron spectroscopy. The electrochemical measurements reveal a quasi-reversible voltammogram of the Fe(CN)6 (3-/4-) redox couple on bare Au and a sigmoidal shape for the GBC- and FBK-modified Au electrodes, thus demonstrating that electron transfer is blocked due to the surface modification. The electrografted AB layer results in strongest inhibition of the Fe(CN)6 (3-/4-) response compared with other aryl layers. The same tendencies are observed for oxygen reduction; however, the blocking effect is not as strong as in the Fe(CN)6 (3-/4-) redox system. The electrochemical impedance spectroscopy measurements allowed the calculation of low charge-transfer rates to the Fe(CN)6 (3-) probe for the GBC- and FBK-modified Au electrodes in relation to bare Au. From these measurements it can be concluded that the FBK film is less compact or presents more pinholes than the electrografted GBC layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201200934 | DOI Listing |
Small
January 2025
Confucius Energy Storage Lab, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Z Energy Storage Center & School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China.
Aqueous rechargeable potassium-ion batteries have considerable advantages and potentials in the application of large-scale energy storage systems, owing to its high safety, abundant potassium resources, and environmental friendliness. However, the practical applications are fraught with numerous challenges. Identification of suitable cathode materials and potassium storage mechanisms are of great significance.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
Cancer Antigen 125 (CA125), is a high molecular weight mucinous glycoprotein found on the surface of ovarian cancer cells. Generally, 90 % of women may appear a high concentration of CA125 when they got the cancer; thus, CA125 can act as a marker for ovarian cancer diagnosis and therapeutic evaluation. COFs have been widely used for disease detection due to their structural stability, high loading capacity and biocompatibility.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Federal University of Uberlândia, Chemistry Institute, Uberlândia, MG, 38400-902, Brazil.
The use of 3D-printed electrodes is reported fabricated from in-house conductive filament composed of a mixture of recycled poly (lactic acid) (rPLA), graphite (Gpt), and carbon black (CB) for fast detection of the abused drug ketamine. Firstly, the performance of these electrodes was evaluated in comparison to 3D-printed electrodes produced employing a commercially available conductive filament. After a simple pretreatment step (mechanical polishing), the new 3D-printed electrodes presented better performance than the electrodes produced from commercial filament in relation to peak-to-peak separation of the redox probe [Fe(CN)]/ (130 mV and 759 mV, respectively), charge transfer resistance (R = 1.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Cnam, SATIE Laboratory, UMR, CNRS 8029, 292 rue Saint Martin, 75003, Paris, France. Electronic address:
Biosensors (Basel)
December 2024
Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!