Copper-dioxygen interactions are of intrinsic importance in a wide range of biological and industrial processes. Here, we present detailed kinetic/thermodynamic studies on the O(2)-binding and arene hydroxylation reactions of a series of xylyl-bridged binuclear copper(I) complexes, where the effects of ligand electronic and structural elements on these reactions are investigated. Ligand 4-pyridyl substituents influence the reversible formation of side-on bound μ-η(2):η(2)-peroxodicopper(II) complexes, with stronger donors leading to more rapid formation and greater thermodynamic stability of product complexes [Cu(II) (2)((R)XYL)(O(2) (2-))](2+). An interaction of the latter with the xylyl π-system is indicated. Subsequent peroxo electrophilic attack on the arene leads to C-H activation and oxygenation with hydroxylated products [Cu(II) (2)((R)XYLO(2-))((-)OH)](2+) being formed. A related unsymmetrical binucleating ligand was also employed. Its corresponding O(2)-adduct [Cu(II) (2)(UN)(O(2) (2-))](2+) is more stable, but primarily because the subsequent decay by hydroxylation is in a relative sense slower. The study emphasizes how ligand electronic effects can and do influence and tune copper(I)-dioxygen complex formation and subsequent reactivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570229 | PMC |
http://dx.doi.org/10.1016/j.ica.2012.01.042 | DOI Listing |
Cancer Lett
January 2025
Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA. Electronic address:
Neoadjuvant immunotherapy represents a pioneering approach in the preoperative treatment of cancer, offering novel avenues for tumor reduction and improved patient outcomes by modulating the immune response. This study investigated neoadjuvant immunotherapy using intratumoral administration of mannan-BAM, Toll-like receptor ligands, and antiCD40 antibody (MBTA therapy) followed by surgery in murine models of mouse tumor tissue (MTT) pheochromocytoma, B16-F10 melanoma, and 4T1 and E0771.lmb mammary carcinomas.
View Article and Find Full Text PDFCell Metab
January 2025
Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China. Electronic address:
Itaconate is a metabolite catalyzed by cis-aconitate decarboxylase (ACOD1), which is mainly produced by activated macrophages and secreted into the extracellular environment to exert complex bioactivity. In the tumor microenvironment, itaconate is concentrated and induces an immunosuppressive response. However, whether itaconate can be taken up by tumor cells and its mechanism of action remain largely unclear.
View Article and Find Full Text PDFNeuron
January 2025
Molecular Neuroregeneration, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK. Electronic address:
Spinal cord injury (SCI) increasingly affects aged individuals, where functional impairment and mortality are highest. However, the aging-dependent mechanisms underpinning tissue damage remain elusive. Here, we find that natural killer-like T (NKLT) cells seed the intact aged human and murine spinal cord and multiply further after injury.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China. Electronic address:
The pathological mechanisms of Parkinson's disease (PD) is complex, and no definitive cure currently exists. This study identified Rutaecarpine (Rut), an alkaloid extracted from natural plants, as a potential therapeutic agent for PD. To elucidate its mechanisms of action and specific effects in PD, network pharmacology, molecular docking, and experimental validation methods were employed.
View Article and Find Full Text PDFBiomaterials
January 2025
Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China. Electronic address:
As a promising anti-tumor modality, photodynamic immunotherapy (PDIT) has been applied for the treatment of many solid tumors. However, tumor hypoxic condition and immunosuppressive microenvironment severely limit the treatment outcome of PDIT. Here, we have designed a hairpin tetrahedral DNA nanostructure (H-TDN)-modified bifunctional cascaded Pt single-atom nanozyme (PCFP@H-TDN) with encapsulation of the photosensitizer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!