Update on the evidence for adjacent segment degeneration and disease.

Spine J

Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889, USA.

Published: March 2013

Background Context: The evidence surrounding the topic of adjacent segment degeneration and disease has increased dramatically with an abundant amount of literature discussing the incidence of and techniques to avoid it. However, this evidence is often confusing to discern because of various definitions of both adjacent segment degeneration and disease.

Purpose: To organize and review the recent evidence for adjacent segment degeneration and disease.

Results: Although multifactorial, three distinct causes of adjacent segment disease in both the lumbar and cervical spine have been discussed: the natural history of the adjacent disc; biomechanical stress on the adjacent level caused by the fusion; and disruption of the anatomy at the adjacent level with the initial surgery. The incidence of adjacent segment degeneration in the lumbar spine has been widely reported in the literature from 0% to 100%; conversely, the reported incidence in the cervical spine is less variable. Similarly, strategies at avoiding adjacent segment disease in the lumbar spine include arthroplasty, dynamic fixation, and percutaneous fixation, whereas in the cervical spine the focus has remained on arthroplasty.

Conclusions: Adjacent segment disease and degeneration remain a multifactorial problem with several techniques being developed recently to minimize them. In the future, it is likely that the popularity of these techniques will be dependent on the long-term results, which are currently unavailable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2012.12.009DOI Listing

Publication Analysis

Top Keywords

adjacent segment
32
segment degeneration
20
segment disease
12
cervical spine
12
adjacent
11
evidence adjacent
8
segment
8
degeneration disease
8
disease lumbar
8
adjacent level
8

Similar Publications

A data-driven framework for developing a unified density-modulus relationship for the human lumbar vertebral body.

J Mech Behav Biomed Mater

January 2025

Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA; Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.

Despite the broad agreement that bone stiffness is heavily dependent on the underlying bone density, there is no consensus on a unified relationship that applies to both cancellous and cortical compartments. Bone from the two compartments is generally assessed separately, and few mechanical test data are available for samples from the transitional regions between them. In this study, we present a data-driven framework integrating experimental testing and numerical modeling of the human lumbar vertebra through an energy balance criterion, to develop a unified density-modulus relationship across the entire vertebral body, without the necessity of differentiation between trabecular and cortical regions.

View Article and Find Full Text PDF

Background: A right adrenal gland may present in the form of adreno-hepatic fusion (AHF), in which the adrenal cells are interspersed among the hepatocytes without septation. This rare, naturally-occurring phenomenon may be associated with preoperative misdiagnosis. We present two cases of adrenal tumor in patients with AHF that were misdiagnosed, despite thorough preoperative work-ups.

View Article and Find Full Text PDF

Pituitary neuroendocrine tumors remain one of the most common intracranial tumors. While radiomic research related to pituitary tumors is progressing, public data sets for external validation remain scarce. We introduce an open dataset comprising high-resolution T1 contrast-enhanced MR scans of 136 patients with pituitary tumors, annotated for tumor segmentation and accompanied by clinical, radiological and pathological metadata.

View Article and Find Full Text PDF

Multidimensional morphological analysis of live sperm based on multiple-target tracking.

Comput Struct Biotechnol J

December 2024

Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.

Manual semen evaluation methods are subjective and time-consuming. In this study, a deep learning algorithmic framework was designed to enable non-invasive multidimensional morphological analysis of live sperm in motion, improve current clinical sperm morphology testing methods, and significantly contribute to the advancement of assisted reproductive technologies. We improved the FairMOT tracking algorithm by incorporating the distance and angle of the same sperm head movement in adjacent frames, as well as the head target detection frame IOU value, into the cost function of the Hungarian matching algorithm.

View Article and Find Full Text PDF

Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!