[Proline, a multifunctional amino-acid involved in plant adaptation to environmental constraints].

Biol Aujourdhui

Physiologie Cellulaire et Moléculaire des Plantes, UR5, EAC 7180 CNRS, Université Pierre et Marie Curie UPMC, Case 156, 4 place Jussieu, 75252 Paris Cedex 05, France.

Published: September 2013

In addition to its role in primary metabolism as a component of proteins, proline is one of the most widely distributed compatible solutes that accumulates in plants during adverse environmental constraints and plays an important role in plant stress tolerance. Proline was proposed to act as stabilizer for proteins and macromolecular complexes, scavenger of free radicals and regulator of cellular redox potential. Intracellular proline concentration depends on a tight regulation between its biosynthesis and catabolism. However the exact role of proline and the signaling pathways involved in the regulation of its metabolism are not completely known yet. Investigation of proline metabolism in model plants would allow to acquire information about the diversity of the mechanisms developed by plants to overcome environmental constraints and to establish some reliable tools for the improvement of crop tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1051/jbio/2012030DOI Listing

Publication Analysis

Top Keywords

environmental constraints
8
proline
5
[proline multifunctional
4
multifunctional amino-acid
4
amino-acid involved
4
involved plant
4
plant adaptation
4
adaptation environmental
4
environmental constraints]
4
constraints] addition
4

Similar Publications

Advances in the semiconductor industry have been limited owing to the constraints imposed by silicon-based CMOS technology; hence, innovative device design approaches are necessary. This study focuses on "more than Moore" approaches, specifically in neuromorphic computing. Although MoS devices have attracted attention as neuromorphic computing candidates, their performances have been limited due to environment-induced perturbations to carrier dynamics and the formation of defect states.

View Article and Find Full Text PDF

An athlete's performance and musculoskeletal health hinges on their ability to adapt their movements to varying environmental constraints. However, research has yet to offer a thorough understanding of whether coordination variability is altered in response to different synthetic and natural turf surfaces. The purpose of this study was to investigate lower extremity coordination variability during hopping and running on four turf surfaces-three synthetic and one natural.

View Article and Find Full Text PDF

Process-based models for range dynamics are urgently needed due to increasing intensity of human-induced biodiversity change. Despite a few existing models that focus on demographic processes, their use remains limited compared to the widespread application of correlative approaches. This slow adoption is largely due to the challenges in calibrating biological parameters and the high computational demands for large-scale applications.

View Article and Find Full Text PDF

The continuous contamination of heavy metals (HMs) in our ecosystem due to industrialization, urbanization and other anthropogenic activities has become a serious environmental constraint to successful crop production. Lead (Pb) toxicity causes ionic, oxidative and osmotic injuries which induce various morphological, physiological, metabolic and molecular abnormalities in plants. Polyethylene glycol (PEG) is widely used to elucidate drought stress induction and alleviation mechanisms in treated plants.

View Article and Find Full Text PDF

Advanced polymeric systems for colon drug delivery: from experimental models to market applications.

Soft Matter

January 2025

Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy.

In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, , Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (, colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!