Theoretical investigation of stilbene as photochromic spin coupler.

J Phys Chem A

Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India.

Published: February 2013

Density functional theory (DFT) based calculations are used here to investigate the magnetic behavior, spectroscopic transitions, and possible photomagnetic properties of stilbene derivatives using photochromicity of cis- and trans-forms of the parent molecule. Nitronyl nitroxide (NN), iminonitroxide (IN), tetrathiafulvalene cation (TTF), and verdazyl (VER) are used as monoradical centers at the p, p' positions. The B3LYP functional with the usual broken symmetry approach and a sufficiently large basis set is chosen to obtain reliable estimates of the intramolecular exchange coupling constants (J). It is found that, with stilbene as a spacer, the coupling of TTF with NN, IN, and VER is always antiferromagnetic with J being generally large and negative. Although J values obtained for cis- and trans-forms are both negative, the difference in J values is quite large. Spectroscopic transition energies and corresponding oscillator strengths of cis- and trans-stilbene diradicals are estimated by time-dependent (TD)-DFT calculations using the same functional. Interestingly, the spectral features of the diradicals are similar to those of cis- and trans-stilbene, which suggests that stilbene diradicals would have good photoswitching properties. Finally, we show that, when these diradicals are placed in a matrix, photochromicity would be accompanied by a significant change in paramagnetic susceptibility.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp306715yDOI Listing

Publication Analysis

Top Keywords

cis- trans-forms
8
cis- trans-stilbene
8
theoretical investigation
4
stilbene
4
investigation stilbene
4
stilbene photochromic
4
photochromic spin
4
spin coupler
4
coupler density
4
density functional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!