Chemokines, 8 kDa proteins implicated in leukocyte migration via oligomerization, bind to glycosaminoglycans (GAGs) during the inflammation response as a means to regulate chemokine migration. Structural characterization of chemokines non-covalently bound to GAGs provides physiologically meaningful data in regard to routine inmmunosurveillance and disease response. In order to analyze the structures resulting from the GAG:chemokine interaction, we employed ion mobility mass spectrometry (IMMS) to analyze monocyte chemoattractant protein-1 (MCP-1), a CC chemokine, and interleukin-8 (IL-8), a CXC chemokine, along with their individual interactions with GAG heparin octasaccharides. We show that MCP-1 and IL-8 are physiologically present as a dimer, with MCP-1 having two variants of its dimeric form and IL-8 having only one. We also show that the MCP-1 dimer adopts two conformations, one extended and one compact, when bound to a dodecasulfated heparin octasaccharide. Binding of MCP-1 to heparin octasaccharide isomers of varying sulfation patterns results in similar arrival time distribution values, which suggests minimal distinguishing features among the resultant complexes. Additionally, tandem mass spectrometry (MS/MS) showed that the binding of MCP-1 to a heparin octasaccharide has different dissociation patterns when compared with the corresponding IL-8 bound dimer. Overall, IMMS and MS/MS were used to better define the structural tendencies and differences associated with CC and CXC dimers when associated with GAG octasaccharides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja310915mDOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
heparin octasaccharide
12
cxc chemokine
8
octasaccharide binding
8
ion mobility
8
mobility mass
8
binding mcp-1
8
mcp-1 heparin
8
mcp-1
6
differentiation cxc
4

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

The ubiquitin (Ub) ligase E6AP, which is encoded by the UBE3A gene, has been associated with several human diseases including cervical cancer and Angelman syndrome, a neurodevelopmental disorder. Yet, our knowledge about disease-relevant substrates of E6AP is still limited. The formation of a thioester complex between Ub and the catalytic Cys residue of E6AP represents an essential intermediate step in E6AP-mediated ubiquitination.

View Article and Find Full Text PDF

Catalyst-Free Nitrogen Fixation by Microdroplets through a Radical-Mediated Disproportionation Mechanism under Ambient Conditions.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.

View Article and Find Full Text PDF

Rapid Determination of Organic and Inorganic Selenium in Poultry Tissues by Internal Extractive Electrospray Ionization Mass Spectrometry.

Anal Chem

January 2025

The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China.

An online reactive internal extraction electrospray ionization (iEESI) method was developed for the rapid determination of organic and inorganic speciation information for selenium in poultry tissue samples without complex sample pretreatment. The addition of citric acid as a reducing agent to the internal extraction solvent of methanol/acetic acid (99:1, V/V) for iEESI resulted in the reduction of selenate in the sample to selenite, accompanied by the production of malic acid as an oxidation product. The quantitative analysis of selenate was conducted by using malic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!