Background: Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species.
Methodology/principal Findings: To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database.
Conclusions/significance: This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572045 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056686 | PLOS |
Mol Oncol
January 2025
Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.
Forkhead box L2 (FOXL2) encodes a transcription factor essential for sex determination, and ovary development and maintenance. Mutations in this gene are implicated in syndromes involving premature ovarian failure and granulosa cell tumors (GCTs). This rare cancer accounts for less than 5% of diagnosed ovarian cancers and is causally associated with the FOXL2 c.
View Article and Find Full Text PDFGigascience
January 2025
Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Background: Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. However, how mutations affect protein expression-in addition to gene expression-has rarely been systematically investigated. This is significant as mRNA and protein levels frequently show only moderate correlation, driven by factors such as translation efficiency and protein degradation.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
Augmenting traditional genome-wide association studies (GWAS) with advanced machine learning algorithms can allow the detection of novel signals in available cohorts. We introduce "genome-wide association neural networks (GWANN)" a novel approach that uses neural networks (NNs) to perform a gene-level association study with family history of Alzheimer's disease (AD). In UK Biobank, we defined cases (n = 42 110) as those with AD or family history of AD and sampled an equal number of controls.
View Article and Find Full Text PDFBiol Reprod
January 2025
Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA.
The bovine conceptus elongates near Day 16 of development and releases interferon-tau (IFNT), disrupting the endometrial luteolytic mechanism to sustain luteal P4 and pregnancy. Conceptus factors other than IFNT modify local endometrial activities to support pregnancy; however, the microenvironment is largely uncharacterized. We utilized a bovine conceptus-endometrial culture system to elucidate the microenvironment in the form of RNA and protein.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
The complex gene regulatory landscape underlying early flower development in Arabidopsis has been extensively studied through transcriptome profiling, and gene networks controlling floral organ development have been derived from the analyses of genome wide binding of key transcription factors. In contrast, the dynamic nature of the proteome during the flower development process is much less understood. In this study, we characterized the floral proteome at different stages during early flower development and correlated it with unbiased transcript expression data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!