Introduction: To investigate whether the difference between sodium and chloride ([Na(+)] - [Cl(-)]) and anion gap corrected for albumin and lactate (AG(corr)) could be used as apparent strong ion difference (SID(app)) and strong ion gap (SIG) surrogates (respectively) in critically ill patients.

Methods: A total of 341 patients were prospectively observed; 161 were allocated to the modeling group, and 180 to the validation group. Simple regression analysis was used to construct a mathematical model between SID(app) and [Na(+)] - [Cl(-)] and between SIG and AG(corr) in the modeling group. Area under the receiver operating characteristic (ROC) curve was also measured. The mathematical models were tested in the validation group.

Results: in the modeling group, SID(app) and SIG were well predicted by [Na(+)] - [Cl(-)] and AG(corr) (R(2) = 0.973 and 0.96, respectively). Accuracy values of [Na(+)] - [Cl(-)] for the identification of SID(app) acidosis (<42.7 mEq/L) and alkalosis (>47.5 mEq/L) were 0.992 (95% confidence interval [CI], 0.963-1) and 0.998 (95%CI, 0.972-1), respectively. The accuracy of AG(corr) in revealing SIG acidosis (>8 mEq/L) was 0.974 (95%CI: 0.936-0.993). These results were validated by showing excellent correlations and good agreements between predicted and measured SID(app) and between predicted and measured SIG in the validation group (R(2) = 0.977; bias = 0±1.5 mEq/L and R(2) = 0.96; bias = -0.2±1.8 mEq/L, respectively).

Conclusions: SID(app) and SIG can be substituted by [Na(+)] - [Cl(-)] and by AG(corr) respectively in the diagnosis and management of acid-base disorders in critically ill patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572048PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056635PLOS

Publication Analysis

Top Keywords

[na+] [cl-]
20
critically ill
12
modeling group
12
anion gap
8
ill patients
8
strong ion
8
validation group
8
sidapp sig
8
[cl-] agcorr
8
predicted measured
8

Similar Publications

Article Synopsis
  • The SFTPC gene mutation (SFTPCI73T) is a major cause of interstitial lung disease, leading to limited treatment options.
  • Research shows that EMC3 is crucial for maintaining surfactant balance in alveolar type 2 cells and influences the metabolism of the SFTPCI73T mutation.
  • Findings indicate that deleting Emc3 can improve lung structure and function in mice with the SFTPCI73T mutation, revealing new therapeutic targets, particularly involving Valosin Containing Protein (VCP) for treatment.
View Article and Find Full Text PDF

While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Combined deletion of the histone methyl transferases Prdm3 and Prdm16 in early lung endoderm causes perinatal lethality due to respiratory failure from loss of AT2 cells and the accumulation of partially differentiated AT1 cells. Combination of single-cell RNA-seq, bulk ATAC-seq, and CUT&RUN data demonstrate that PRDM3 and PRDM16 regulate chromatin accessibility at NKX2-1 transcriptional targets critical for perinatal AT2 cell differentiation and surfactant homeostasis.

View Article and Find Full Text PDF

Differential chromatin accessibility accompanies and mediates transcriptional control of diverse cell fates and their differentiation during embryogenesis. While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Here, we demonstrate that the paired domain zinc finger transcriptional regulators PRDM3 and PRDM16 regulate chromatin accessibility to mediate cell differentiation decisions during lung morphogenesis.

View Article and Find Full Text PDF

Durable alveolar engraftment of PSC-derived lung epithelial cells into immunocompetent mice.

Cell Stem Cell

September 2023

Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA. Electronic address:

Durable reconstitution of the distal lung epithelium with pluripotent stem cell (PSC) derivatives, if realized, would represent a promising therapy for diseases that result from alveolar damage. Here, we differentiate murine PSCs into self-renewing lung epithelial progenitors able to engraft into the injured distal lung epithelium of immunocompetent, syngeneic mouse recipients. After transplantation, these progenitors mature in the distal lung, assuming the molecular phenotypes of alveolar type 2 (AT2) and type 1 (AT1) cells.

View Article and Find Full Text PDF

Neutrophil extracellular traps contribute to lung injury in cystic fibrosis and asthma, but the mechanisms are poorly understood. We sought to understand the impact of human NETs on barrier function in primary human bronchial epithelial and a human airway epithelial cell line. We demonstrate that NETs disrupt airway epithelial barrier function by decreasing transepithelial electrical resistance and increasing paracellular flux, partially by NET-induced airway cell apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!