Spot the difference: mimicry in a coral reef fish.

PLoS One

Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, Western Australia, Australia.

Published: August 2013

Eyespots on the body of many animals have long been assumed to confer protection against predators, but empirical evidence has recently demonstrated that this may not always be the case and suggested that such markings may also serve other purposes. Clearly, this raises the unresolved question of what functions do these markings have and do they contribute to an individual's evolutionary fitness in the wild. Here, we examined the occurrence of eyespots on the dorsal fin of a coral reef damselfish (Pomacentrus amboinensis), where these markings are typical of the juvenile stage and fade away as the fish approaches sexual maturation to then disappear completely in the vast majority of, but not all, adult individuals. By exploring differences in body shape among age and gender groups, we found that individuals retaining the eyespot into adulthood are all sexually mature males, suggesting that these eyespots may be an adult deceptive signal. Interestingly, the body shape of these individuals resembled more closely that of immature females than mature dominant males. These results suggest that eyespots have multiple roles and their functional significance changes within the lifetime of an animal from being a juvenile advertisement to a deceptive adult signal. Male removal experiments or colour manipulations may be necessary to establish specific functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572176PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055938PLOS

Publication Analysis

Top Keywords

coral reef
8
body shape
8
spot difference
4
difference mimicry
4
mimicry coral
4
reef fish
4
eyespots
4
fish eyespots
4
eyespots body
4
body animals
4

Similar Publications

Prioritization of climate change mitigation strategies for coastal regions using the Analytic Hierarchy Process.

Mar Pollut Bull

January 2025

Department of Environmental Health Engineering, School of Public Health, Islamic Azad University, Kerman, Iran. Electronic address:

This study utilizes the Analytic Hierarchy Process (AHP) to prioritize climate change mitigation strategies for coastal regions systematically. The AHP, a robust data-driven decision-making framework, was employed to evaluate five strategies: Mangrove Restoration, Zoning and Building Codes, Seawalls, Coral Reef Protection, and Relocation Programs. The analysis revealed that Mangrove Restoration emerged as the most effective strategy, achieving the highest score of 0.

View Article and Find Full Text PDF

Ecosystems globally have reached critical tipping points because of climate change, urbanization, unsustainable resource consumption, and pollution. In response, international agreements have set targets for conserving 30% of global ecosystems and restoring 30% of degraded lands and waters by 2030 (30×30). In 2021, the United States set a target to jointly conserve and restore 30% of US lands and waters by 2030, with a specific goal to restore coastal ecosystems, namely wetlands, seagrasses, coral and oyster reefs, and mangrove and kelp forests, to increase resilience to climate change.

View Article and Find Full Text PDF

Ecosystems are substantially changing in response to ongoing climate change. For example, coral reefs have declined in coral dominance, with some reefs undergoing regime shifts to non-coral states. However, reef responses may vary through multiple heat stress events, with the rarity of long-term ecological datasets rendering such understanding uncertain.

View Article and Find Full Text PDF

Background: In the context of global change, coral reefs and their associated biodiversity are under threat. Several conservation strategies using population genetics have been explored to protect them. However, some components of this ecosystem are understudied, such as hydrozoans, an important class of benthic organisms worldwide.

View Article and Find Full Text PDF

Mesophotic coral ecosystems (MCEs) have gained considerable attention this last decade but the paucity of knowledge on these ecosystems is pronounced, particularly in the Southwestern Indian Ocean region. We explore the spatial variation in macro-benthic and scleractinian communities along a wide depth gradient (15-95 m) and among contrasted sites around Reunion Island. Values for percent cover of macro-benthic and scleractinian communities varied significantly along depth, resulting in a vertical zonation of communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!