We observed the therapeutic effect of Fasudil and explored its mechanisms in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Fasudil, a selective Rho kinase (ROCK) inhibitor, was injected intraperitoneally at 40 mg/kg/d in early and late stages of EAE induction. Fasudil ameliorated the clinical severity of EAE at different stages, and decreased the expression of ROCK-II in spleen, accompanied by an improvement in demyelination and inhibition of inflammatory cells. Fasudil mainly inhibited CD4(+)IL-17(+) T cells in early treatment, but also elevated CD4(+)IL-10(+) regulatory T cells and IL-10 production in late treatment. The treatment of Fasudil shifted inflammatory M1 to anti-inflammatory M2 macrophages in both early and late treatment, being shown by inhibiting CD16/32, iNOS, IL-12, TLR4 and CD40 and increasing CD206, Arg-1, IL-10 and CD14 in spleen. By using Western blot and immunohistochemistry, iNOS and Arg-1, as two most specific markers for M1 and M2, was inhibited or induced in splenic macrophages and spinal cords of EAE mice treated with Fasudil. In vitro experiments also indicate that Fasudil shifts M1 to M2 phenotype, which does not require the participation or auxiliary of other cells. The polarization of M2 macrophages was associated with the decrease of inflammatory cytokine IL-1β, TNF-α and MCP-1. These results demonstrate that Fasudil has therapeutic potential in EAE possibly through inducing the polarization of M2 macrophages and inhibiting inflammatory responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572131 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054841 | PLOS |
Planta Med
January 2025
Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
(ES) exerts various pharmacological effects, including renoprotection in a rat model of renal ischemia-reperfusion injury. However, the mechanisms of these effects remain unclear. Therefore, we investigated the effects and mechanisms of ES on aristolochic acid (AA)-induced acute kidney injury in mice.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea.
While cisplatin is an effective anti-tumor treatment, it induces ototoxicity through mechanisms involving DNA damage, oxidative stress, and programmed cell death. Rho-associated coiled-coil-containing protein kinase (ROCK) is essential for numerous cellular processes, including apoptosis regulation. Studies have suggested that ROCK inhibitors could prevent apoptosis and promote regeneration.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
Rho-associated protein kinase (ROCK) inhibitors are therapeutic candidates in ischemic stroke and subarachnoid hemorrhage. However, their efficacy in intracerebral hemorrhage (ICH) is unknown. Here, we tested the efficacy of fasudil (10 mg/kg), an isoform-nonselective ROCK inhibitor, and NRL-1049 (10 mg/kg), a novel inhibitor with 43-fold higher selectivity for ROCK2 isoform compared with ROCK1, in a collagenase-induced ICH model in mice.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Neurology, Peking University First Hospital, Beijing, China.
Introduction: Cerebral cavernous malformation (CCM) is a type of cerebrovascular abnormality in the central nervous system linked to both germline and somatic genetic mutations. Recent preclinical and clinical studies have shown that various drugs can effectively reduce the burden of CCM lesions. Despite significant progress, the mechanisms driving CCM remain incompletely understood, and to date, no drugs have been developed that can cure or prevent CCM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!