Niflumic acid disrupts marine spermatozoan chemotaxis without impairing the spatiotemporal detection of chemoattractant gradients.

J Cell Sci

Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México.

Published: March 2013

In many broadcast-spawning marine organisms, oocytes release chemicals that guide conspecific spermatozoa towards them through chemotaxis. In the sea urchin Lytechinus pictus, the chemoattractant peptide speract triggers a train of fluctuations of intracellular Ca(2+) concentration in the sperm flagella. Each transient Ca(2+) elevation leads to a momentary increase in flagellar bending asymmetry, known as a chemotactic turn. Furthermore, chemotaxis requires a precise spatiotemporal coordination between the Ca(2+)-dependent turns and the form of chemoattractant gradient. Spermatozoa that perform Ca(2+)-dependent turns while swimming down the chemoattractant gradient, and conversely suppress turning events while swimming up the gradient, successfully approach the center of the gradient. Previous experiments in Strongylocentrotus purpuratus sea urchin spermatozoa showed that niflumic acid (NFA), an inhibitor of several ion channels, drastically altered the speract-induced Ca(2+) fluctuations and swimming patterns. In this study, mathematical modeling of the speract-dependent Ca(2+) signaling pathway suggests that NFA, by potentially affecting hyperpolarization-activated and cyclic nucleotide-gated channels, Ca(2+)-regulated Cl(-) channels and/or Ca(2+)-regulated K(+) channels, may alter the temporal organization of Ca(2+) fluctuations, and therefore disrupt chemotaxis. We used a novel automated method for analyzing sperm behavior and we identified that NFA does indeed disrupt chemotactic responses of L. pictus spermatozoa, although the temporal coordination between the Ca(2+)-dependent turns and the form of chemoattractant gradient is unaltered. Instead, NFA disrupts sperm chemotaxis by altering the arc length traveled during each chemotactic turning event. This alteration in the chemotactic turn trajectory disorientates spermatozoa at the termination of the turning event. We conclude that NFA disrupts chemotaxis without affecting how the spermatozoa decode environmental cues.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.121442DOI Listing

Publication Analysis

Top Keywords

ca2+-dependent turns
12
chemoattractant gradient
12
niflumic acid
8
sea urchin
8
chemotactic turn
8
coordination ca2+-dependent
8
turns form
8
form chemoattractant
8
ca2+ fluctuations
8
nfa disrupts
8

Similar Publications

The developmental changes in the excitation-contraction mechanisms of the ventricular myocardium of small animals (guinea pig, rat, mouse) and their sympathetic regulation will be summarized. The action potential duration monotonically decreases during pre- and postnatal development in the rat and mouse, while in the guinea pig it decreases during the fetal stage but turns into an increase just before birth. Such changes can be attributed to changes in the repolarizing potassium currents.

View Article and Find Full Text PDF

Activation of Ca-dependent TMEM16 scramblases induces phosphatidylserine externalization, a key step in multiple signaling processes. Current models suggest that the TMEM16s scramble lipids by deforming the membrane near a hydrophilic groove and that Ca dependence arises from the different association of lipids with an open or closed groove. However, the molecular rearrangements underlying groove opening and how lipids reorganize outside the closed groove remain unknown.

View Article and Find Full Text PDF

Gelsolin from mussel's catch muscle.

Biochem Biophys Res Commun

December 2023

Laboratory of Cell Biophysics, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.

Proteins of the gelsolin family are Ca2+-dependent, multifunctional, actin-binding proteins containing three (S1-S3, about 40 kDa) or six (S1-S6, about 80 kDa) highly conserved repeats in the amino acid sequence. The pattern of interaction of these proteins with actin is complex: they can sever actin filaments; promote polymer nucleation after binding to two actin monomers; and cap the growing barbed end of actin filaments. In the present study, an actin polymerizing factor (46 kDa) from the adductor muscle of a bivalve mollusc has been discovered and identified for the first time.

View Article and Find Full Text PDF

Vitamin E succinate mediated apoptosis by juxtaposing endoplasmic reticulum and mitochondria.

Biochim Biophys Acta Gen Subj

December 2023

Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan. Electronic address:

Vitamin E succinate (VES) is an esterified form of natural α-tocopherol, has turned out to be novel anticancer agent. However, its anticancer mechanisms have not been illustrated. Previously, we reported VES mediated Ca release from the endoplasmic reticulum (ER) causes mitochondrial Ca overload, leading to mitochondrial depolarization and apoptosis.

View Article and Find Full Text PDF
Article Synopsis
  • - This review explores how oxidative stress from exposure to various heavy metals (like Ag, Hg, Cd, etc.) leads to apoptosis, a process of programmed cell death, affecting mitochondrial and cellular health.
  • - The mechanisms involved include activation of specific enzymes (caspases) and genes linked to apoptosis, as well as damage to mitochondria signified by changes in membrane potential and increased production of reactive oxygen species (ROS).
  • - Differences in thallium's toxic effects compared to other metals are highlighted, such as its unique interactions with cellular processes and metallothioneins, suggesting distinct pathways of toxicity and implications for human health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!