Abnormal cardiac valve morphogenesis is a common cause of human congenital heart disease. The molecular mechanisms regulating endocardial cell proliferation and differentiation into cardiac valves remain largely unknown, although great progress has been made on the endocardial contribution to the atrioventricular cushion and valve formation. We found that scotch tape(te382) (sco(te382)) encodes a novel transmembrane protein that is crucial for endocardial cell proliferation and heart valve development. The zebrafish sco(te382) mutant showed diminished endocardial cell proliferation, lack of heart valve leaflets and abnormal common cardinal and caudal veins. Positional cloning revealed a C946T nonsense mutation of a novel gene pku300 in the sco(te382) locus, which encoded a 540-amino-acid protein on cell membranes with one putative transmembrane domain and three IgG domains. A known G3935T missense mutation of fbn2b was also found ∼570 kb away from pku300 in sco(te382) mutants. The genetic mutant sco(pku300), derived from sco(te382), only had the C946T mutation of pku300 and showed reduced numbers of atrial endocardial cells and an abnormal common cardinal vein. Morpholino knockdown of fbn2b led to fewer atrial endocardial cells and an abnormal caudal vein. Knockdown of both pku300 and fbn2b phenocopied these phenotypes in sco(te382) genetic mutants. pku300 transgenic expression in endocardial and endothelial cells, but not myocardial cells, partially rescued the atrial endocardial defects in sco(te382) mutants. Mechanistically, pku300 and fbn2b were required for endocardial cell proliferation, endocardial Notch signaling and the proper formation of endocardial cell adhesion and tight junctions, all of which are crucial for cardiac valve development. We conclude that pku300 and fbn2b represent the few genes capable of regulating endocardial cell proliferation and signaling in zebrafish cardiac valve development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644139PMC
http://dx.doi.org/10.1242/jcs.116996DOI Listing

Publication Analysis

Top Keywords

endocardial cell
28
cell proliferation
24
pku300 fbn2b
16
valve development
16
endocardial
13
cardiac valve
12
atrial endocardial
12
pku300
8
cell
8
development zebrafish
8

Similar Publications

Spns1-dependent endocardial lysosomal function drives valve morphogenesis through Notch1-signaling.

iScience

December 2024

Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland.

Autophagy-lysosomal degradation is a conserved homeostatic process considered to be crucial for cardiac morphogenesis. However, both its cell specificity and functional role during heart development remain unclear. Here, we introduced zebrafish models to visualize autophagic vesicles and track their temporal and cellular localization in the larval heart.

View Article and Find Full Text PDF

Cardiac myxoma in its morphology is a typical benign tumor, meanwhile, the fact of its localization in the heart chamber, directly in the constant blood flow, largely determines the clinical behavior of this neoplasm, which is often manifested by the development of characteristics that formally determine the aggressive and even malignant nature of the course. Accordingly, the malignancy of cardiac myxoma is determined more by its clinical behavior (recurrence, multifocality of the lesion, the presence of mechanisms of spread similar to metastasis) rather than by its histological picture. In the structure of primary benign tumors of the heart, myxoma occupies a dominant position and its incidence is up to 85%.

View Article and Find Full Text PDF

Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium.

View Article and Find Full Text PDF

Rhythmic forces shaping the zebrafish cardiac system.

Trends Cell Biol

December 2024

Department of Bioengineering, Imperial College London, London, UK. Electronic address:

The structural development of the heart depends heavily on mechanical forces, and rhythmic contractions generate essential physical stimuli during morphogenesis. Cardiac cells play a critical role in coordinating this process by sensing and responding to these mechanical forces. In vivo, cells experience rhythmic spatial and temporal variations in deformation-related stresses throughout heart development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!