The small GTPases Rab5 and Rab7 are important organisers of endosome formation and maturation. In addition, they orchestrate the trafficking of cargo through the endosomal pathway. A crucial event during maturation of endosomes is the replacement of the early organiser Rab5 with the late organiser Rab7 in a process called Rab conversion. Rab conversion is a prerequisite for late events, chief among them the fusion of matured endosomes with the lysosome. Recent work identifies members of the Sand1/Mon1 protein family as crucial factors during this process. Here, we present an analysis of the function of the Drosophila ortholog of mon1/sand1, Dmon1. We found that loss of function of Dmon1 results in an enlargement of maturing endosomes and loss of their association with Rab7. The enlarged endosomes contain Notch and other trans-membrane proteins as cargo. We report the first electron microscopy analysis of Dmon1 cells in a metazoan and extend the analysis of the endosomes in mutant cells. Our results suggest that the phenotype can be explained by the loss of function of Rab7. Moreover, the endosomes of Dmon1 cells mature normally in many aspects, despite the loss of association with Rab7. Surprisingly, we did not observe overactive or ectopic signalling through receptors such as Notch and RTKs in Dmon1 mutant cells, as would have been expected because of the accumulation of receptors in the maturing endosomes of these cells. This was the case even when receptor uptake into intraluminal vesicles was suppressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647437 | PMC |
http://dx.doi.org/10.1242/jcs.114934 | DOI Listing |
Plant Cell
January 2025
State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.
View Article and Find Full Text PDFUnlabelled: All eukaryotes utilize regulated secretion to release molecular signals packaged in secretory granules for local and remote signaling. An anion shunt conductance was first suggested in secretory granules of bovine chromaffin cells nearly five decades ago. Biochemical identity of this conductance remains undefined.
View Article and Find Full Text PDFUnlabelled: Mycobacterial cell envelopes are rich in unusual lipids and glycans that play key roles during infection and vaccination. The most abundant envelope glycolipid is trehalose dimycolate (TDM). TDM compromises the host response to mycobacterial species via multiple mechanisms, including inhibition of phagosome maturation.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, USA. Electronic address:
Endocytosis is a prominent mechanism for SARS-CoV-2 entry into host cells. Upon internalization into early endosomes (EEs), the virus is transported to late endosomes (LEs), where acidic conditions facilitate spike protein processing and viral genome release. Dynein and kinesin motors drive EE transport along microtubules; dynein moves EEs to the perinuclear region, while kinesins direct them towards the plasma membrane, creating a tug-of-war over the direction of transport.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!