PD-1, a receptor expressed by T cells, B cells, and monocytes, is a potent regulator of immune responses and a promising therapeutic target. The structure and interactions of human PD-1 are, however, incompletely characterized. We present the solution nuclear magnetic resonance (NMR)-based structure of the human PD-1 extracellular region and detailed analyses of its interactions with its ligands, PD-L1 and PD-L2. PD-1 has typical immunoglobulin superfamily topology but differs at the edge of the GFCC' sheet, which is flexible and completely lacks a C" strand. Changes in PD-1 backbone NMR signals induced by ligand binding suggest that, whereas binding is centered on the GFCC' sheet, PD-1 is engaged by its two ligands differently and in ways incompletely explained by crystal structures of mouse PD-1 · ligand complexes. The affinities of these interactions and that of PD-L1 with the costimulatory protein B7-1, measured using surface plasmon resonance, are significantly weaker than expected. The 3-4-fold greater affinity of PD-L2 versus PD-L1 for human PD-1 is principally due to the 3-fold smaller dissociation rate for PD-L2 binding. Isothermal titration calorimetry revealed that the PD-1/PD-L1 interaction is entropically driven, whereas PD-1/PD-L2 binding has a large enthalpic component. Mathematical simulations based on the biophysical data and quantitative expression data suggest an unexpectedly limited contribution of PD-L2 to PD-1 ligation during interactions of activated T cells with antigen-presenting cells. These findings provide a rigorous structural and biophysical framework for interpreting the important functions of PD-1 and reveal that potent inhibitory signaling can be initiated by weakly interacting receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636866PMC
http://dx.doi.org/10.1074/jbc.M112.448126DOI Listing

Publication Analysis

Top Keywords

human pd-1
12
pd-1
10
structure interactions
8
interactions human
8
pd-l2 pd-1
8
gfcc' sheet
8
human
4
human programmed
4
programmed cell
4
cell death
4

Similar Publications

Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer type in the world and is associated with an overall poor prognosis. The protein methyltransferase SET and MYND domain-containing 3 (SMYD3), which trimethylates H3K4, activates gene transcription and enhances several oncogenic pathways, including epithelial-mesenchymal transition and cell cycle related pathways, in various cancer types. It was also recently shown that SMYD3 is overexpressed in HPV-negative HNSCC, and represses the expression of type I IFN response genes, contributing to resistance to anti-PD-1 checkpoint blockade in this disease.

View Article and Find Full Text PDF

Anti-PD-1 exacerbates bleomycin-induced lung injury in mice via Caspase-3/GSDME-mediated pyroptosis.

Cell Death Dis

January 2025

State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.

Immune checkpoint inhibitors (ICIs) have significant therapeutic effects but can also cause fatal lung injury. However, the lack of mouse animal models of ICI-related lung injury (ICI-LI) has limited the in-depth exploration of its pathogenesis. In clinical practice, underlying lung diseases increase the risk of lung injury.

View Article and Find Full Text PDF

[Detection and interpretation of PD-L1 in urologic neoplasms].

Zhonghua Bing Li Xue Za Zhi

January 2025

Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing100191, China.

Immune checkpoint inhibitors targeting PD-1/PD-L1 are gradually being applied in the treatment of advanced urinary system tumors. Immunohistochemical analysis of PD-L1 expression is the most popular method for screening suitable patients for immunotherapy and predicting therapeutic efficacy. The current application status of PD-L1 detection for urinary system tumors (mainly urothelial carcinoma), methods of the different antibody tests and the precautions, challenges and solutions in the interpretation of immunostaining were summarized in this review.

View Article and Find Full Text PDF

Lethal clinical outcome and chemotherapy and immunotherapy resistance in patients with urothelial carcinoma with MDM2 amplification or overexpression.

J Immunother Cancer

January 2025

NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China

Background: The E3 ubiquitin ligase murine double minute 2 (MDM2) binds the p53 transcriptional activation domain and acts as a potent inhibitor of pathway, one of the three most crucial oncogenic pathways in urothelial carcinoma (UC). However, the clinical significance and impact on tumor immune contexture of amplification in UC remain unclear.

Methods: This study analyzed 240 patients with UC with matched clinical annotations from two local cohorts (ZSHS cohort and FUSCC cohort).

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors targeting programmed cell death protein-1 (PD-1) are the first line of treatment for many solid tumors including melanoma. PD-1 blockade enhances the effector functions of melanoma-infiltrating CD8 T cells, leading to durable tumor remissions. However, 55% of patients with melanoma do not respond to treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!