Currently, nitritation-anammox (anaerobic ammonium oxidation) bioreactors are designed to treat wastewaters with high ammonium concentrations at mesophilic temperatures (25 to 40°C). The implementation of this technology at ambient temperatures for nitrogen removal from municipal wastewater following carbon removal may lead to more-sustainable technology with energy and cost savings. However, the application of nitritation-anammox bioreactors at low temperatures (characteristic of municipal wastewaters except in tropical and subtropical regions) has not yet been explored. To this end, a laboratory-scale (5-liter) nitritation-anammox sequencing batch reactor was adapted to 12°C in 10 days and operated for more than 300 days to investigate the feasibility of nitrogen removal from synthetic pretreated municipal wastewater by the combination of aerobic ammonium-oxidizing bacteria (AOB) and anammox. The activities of both anammox and AOB were high enough to remove more than 90% of the supplied nitrogen. Multiple aspects, including the presence and activity of anammox, AOB, and aerobic nitrite oxidizers (NOB) and nitrous oxide (N2O) emission, were monitored to evaluate the stability of the bioreactor at 12°C. There was no nitrite accumulation throughout the operational period, indicating that anammox bacteria were active at 12°C and that AOB and anammox bacteria outcompeted NOB. Moreover, our results showed that sludge from wastewater treatment plants designed for treating high-ammonium-load wastewaters can be used as seeding sludge for wastewater treatment plants aimed at treating municipal wastewater that has a low temperature and low ammonium concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623191PMC
http://dx.doi.org/10.1128/AEM.03987-12DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
12
municipal wastewater
12
low temperature
8
ammonium concentrations
8
aob anammox
8
anammox aob
8
anammox bacteria
8
sludge wastewater
8
wastewater treatment
8
treatment plants
8

Similar Publications

Adaptation of Archaeal Communities to Summer Hypoxia in the Sediment of Bohai Sea.

Ecol Evol

January 2025

Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Science Tianjin Normal University Tianjin China.

Understanding the adaptation of archaea to hypoxia is essential for deciphering the functions and mechanisms of microbes when suffering environmental changes. However, the dynamics and responses of archaea to the sedimentary hypoxia in Bohai Sea are still unclear. In this study, the diversity, composition, and distribution of archaeal community in sediment along an inshore-offshore transect across the oxygen-depleted area in the Bohai Sea were investigated in June, July, and August of 2021 by employing high-throughput sequencing of 16S rRNA gene.

View Article and Find Full Text PDF

Interfacial Water Regulation for Nitrate Electroreduction to Ammonia at Ultralow Overpotentials.

Adv Mater

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Nitrate electroreduction is promising for achieving effluent waste-water treatment and ammonia production with respect to the global nitrogen balance. However, due to the impeded hydrogenation process, high overpotentials need to be surmounted during nitrate electroreduction, causing intensive energy consumption. Herein, a hydroxide regulation strategy is developed to optimize the interfacial HO behavior for accelerating the hydrogenation conversion of nitrate to ammonia at ultralow overpotentials.

View Article and Find Full Text PDF

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a complex acute respiratory illness with a high mortality rate. Reactive oxygen species (ROS) play a pivotal role in ALI, inducing cellular damage, inflammation, and oxidative stress, thereby exacerbating the severity of the injury. In this study, inspired by the "subtractive" strategy, we developed a fucoidan-based macrophage membrane bio-nanosystem, abbreviated as MF@CB, designed as an anti-inflammatory and antioxidant agent to alleviate lipopolysaccharide (LPS)-induced inflammation in ALI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!