Salinity is one of the most important environmental constraints limiting agricultural productivity. Considering the importance of the accumulation of osmolytes, myo-inositol in particular, in halophytic plant's adaptive response to salinity, an effort was made to overexpress the SaINO1 gene from the grass halophyte Spartina alterniflora encoding myo-inositol 1-phosphate synthase (MIPS) in Arabidopsis thaliana. We demonstrated that SaINO1 is a stress-responsive gene and its constitutive over expression in Arabidopsis provides significantly improved tolerance to salt stress during germination and seedling growth and development. The transgenics retained more chlorophyll and carotenoid by protecting the photosystem II. The low level of stress-induced cellular damage in the transgenics was clearly evident by lower accumulation of proline in comparison to WT. Our results indicated that possible overaccumulation of MIPS enzyme in the cytosol protected the transgenic Arabidopsis plants overexpressing SaINO1 from the toxic effect of Na(+) under salt stress by reducing cellular damage and chlorophyll loss.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2013.01.009DOI Listing

Publication Analysis

Top Keywords

salt stress
12
arabidopsis plants
8
myo-inositol 1-phosphate
8
1-phosphate synthase
8
tolerance salt
8
cellular damage
8
arabidopsis
4
plants constitutively
4
constitutively overexpressing
4
overexpressing myo-inositol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!