Post-translational regulation of mTOR complex 1 in hypoxia and reoxygenation.

Cell Signal

Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore.

Published: May 2013

The mechanistic target of rapamycin complex 1 (mTORC1) is a key regulator of cell growth and proliferation in response to various upstream signals. Hypoxia has been shown to exert a strong inhibitory effect on mTORC1 activity. Various mechanisms involving gene transcription have been proposed to mediate the effect of hypoxia on mTORC1 activity. Here we show that oxygen concentrations regulate mTORC1 activity in a highly dynamic manner. The rapid response of mTORC1 to changes in oxygen concentrations was not mediated by the HIF transcription factor or its transcriptional targets, REDD1 and BNIP3. Interestingly, we observed that the rapid response of mTORC1 activity to changes in oxygen concentrations is independent of transcription and new protein synthesis. This suggests a post-translational regulation mTORC1 activity in hypoxia and reoxygenation. We also provide evidence that hypoxia does not regulate mTORC1 via the TSC1/2 or Ragulator pathways but directly at the level of mTORC1. In conclusion, our results suggest that mTORC1 can respond rapidly to changes in oxygen concentrations via a post-translational mechanism that may involve a heme containing protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2013.02.012DOI Listing

Publication Analysis

Top Keywords

mtorc1 activity
20
oxygen concentrations
16
changes oxygen
12
mtorc1
10
post-translational regulation
8
hypoxia reoxygenation
8
regulate mtorc1
8
rapid response
8
response mtorc1
8
hypoxia
5

Similar Publications

TSC complex decrease the expression of mTOR by regulated miR-199b-3p.

Sci Rep

January 2025

Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.

The TSC complex formed by TSC1 and TSC2 is the most important upstream negative regulator of mTORC1. Genetic variations in either TSC1 or TSC2 cause tuberous sclerosis complex (TSC) disease which is a rare autosomal dominant disorder resulting in impairment of multiple organ systems. In this study, besides a reported variation, c.

View Article and Find Full Text PDF

Rapamycin protects glucocorticoid-induced glaucoma model mice against trabecular meshwork fibrosis by suppressing mTORC1/2 signaling.

Eur J Pharmacol

January 2025

Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China. Electronic address:

Systemic or local use of glucocorticoids (GCs) can induce pathological elevation of intraocular pressure (IOP), potentially leading to permanent visual loss. Previous studies have demonstrated that rapamycin (Rapa) inhibits the activation of retinal glial cells and the production of neuroinflammation, achieving neuroprotective goals. However, there has been little research on the effect of Rapa on the trabecular meshwork (TM).

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) system is vital to placental development, formation, and function. Alterations in this system in the placenta have been associated with altered fetal growth. However, changes in placental mTOR signaling across gestation are poorly understood.

View Article and Find Full Text PDF

Protocol for microinjection of rapamycin into the zebrafish habenula.

STAR Protoc

January 2025

Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland; Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland. Electronic address:

Mechanistic target of rapamycin complex 1 (mTorC1) activity plays a crucial role in brain development. Here, we present an approach for rapamycin microinjection into the habenula of larval zebrafish to achieve localized inhibition of the mTorC1 pathway and explore the role of mTorC1 in habenula function. We describe steps for performing microinjections and maintaining zebrafish larvae before and after the procedure.

View Article and Find Full Text PDF

mTOR signalling controls protein aggregation during heat stress and cellular aging in a translation- and Hsf1-independent manner.

J Biol Chem

January 2025

Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden. Electronic address:

The mTOR (mechanistic target of rapamycin) signaling pathway appears central to the aging process as genetic or pharmacological inhibition of mTOR extends lifespan in most eukaryotes tested. While the regulation of protein synthesis by mTOR has been studied in great detail, its impact on protein misfolding and aggregation during stress and aging is less explored. In this study, we identified the mTOR signaling pathway and the linked SEA complex as central nodes of protein aggregation during heat stress and cellular aging, using Saccharomyces cerevisiae as a model organism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!