Chemoresistance due to oxidative stress resistance or upregulation of Bcl-2 contributes to poor outcome in the treatment of hematological malignancies. In this study, we utilize the copper-chelator drug ATN-224 (choline tetrathiomolybdate) to induce cell death in oxidative stress-resistant cells and cells overexpressing Bcl-2 by modulating the cellular redox environment and causing mitochondrial dysfunction. ATN-224 treatment decreases superoxide dismutase 1 (SOD1) activity, increases intracellular oxidants, and induces peroxynitrite-dependent cell death. ATN-224 also targets the mitochondria, decreasing both cytochrome c oxidase (CcOX) activity and mitochondrial membrane potential. The concentration of ATN-224 required to induce cell death is proportional to SOD1 levels, but independent of Bcl-2 status. In combination with doxorubicin, ATN-224 enhances cell death. In primary B-cell acute lymphoblastic leukemia patient samples, ATN-224 decreases the viable cell number. Our findings suggest that ATN-224's dual targeting of SOD1 and CcOX is a promising approach for treatment of hematological malignancies either as an adjuvant or as a single agent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654089 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!