We report on a sensitive, simple, label-free cell-based electrochemical sensor to monitor the toxic effect of acrylamide on the Pheochromocytoma cells. The surface of the electrode was modified with gold nanoparticles and electrochemically reduced graphene oxide. Cyclic voltammetry, impedance spectroscopy and differential pulse voltammetry were applied to characterize the modified electrode. Reduced graphene oxide was proved to increase electron-transfer rate between the cell and the surface of electrode, while gold nanoparticle retain cell bioactivity. The sensor exhibited good correlation to the logarithmic value of cell numbers ranging from 1.6×10(4) to 1.6×10(7) cells mL(-1), with R.S.D value of 1.68%. The value of differential pulse voltammetry (cell adsorption concentration of 1.6×10(7) cells mL(-1)) decreased with the concentration of acrylamide in range of 0.1-5 mM with the detection limit as 0.04 mM. Scanning electron microscope-based morphological and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis confirmed the results of the electrochemical study. This sensor was proved to be a useful tool for probing the toxicity of cells, and assisted in the development of a labeling-free, simple, rapid and immediate detection method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2013.01.031DOI Listing

Publication Analysis

Top Keywords

electrochemical sensor
8
pheochromocytoma cells
8
surface electrode
8
reduced graphene
8
graphene oxide
8
differential pulse
8
pulse voltammetry
8
16×107 cells
8
cells ml-1
8
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!