Expression level of an hsp-16.2::gfp transgene is a predictor of longevity in Caenorhabditis elegans. Here we examine fertility, movement and longevity, comparing high-expressing ("bright") and low-expressing ("dim") animals. There was no differential fertility between bright and dim individuals, suggesting that dim worms were not excessively frail. Worms with high hsp-16.2::gfp expression had improved mobility, consistent with improved health span. We predicted that the increased longevity of the bright worms would be associated with increased expression of protective genes such as those shown to be upregulated in Age mutants. However, few genes were differentially transcribed, although internal controls (hsp-16.2 and family members) were differentially expressed. Quite surprising was the observation that expression level of the transgenic reporter was inherited by the progeny: in seven experiments bright worms consistently produced progeny that were brighter. We tested and ruled out possible artifacts such as differential copy-number of the transgene as an explanation of this differential brightness. These results suggest that a robust physiological state does not depend heavily upon transcriptional differences for its establishment, consistent with proteostatic mechanisms underlying the differential longevity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mad.2013.02.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!