Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact.

J Environ Radioact

Grupo Física Nuclear Aplicada, Departamento Física Aplicada II, Universidad de Sevilla, E.T.S.A., Avenida Reina Mercedes, 241012 Sevilla, Spain.

Published: June 2013

A study about the distribution of several radionuclides from the uranium and the thorium series radionuclides along the production process of a typical NORM industry devoted to the production of titanium dioxide has been performed. With this end the activity concentrations in raw materials, final product, co-products, and wastes of the production process have been determined by both gamma-ray and alpha-particle spectrometry. The main raw material used in the studied process (ilmenite) presents activity concentrations of around 300 Bq kg(-1) for Th-series radionuclides and 100 Bq kg(-1) for the U-series ones. These radionuclides in the industrial process are distributed in the different steps of the production process according mostly to the chemical behaviour of each radioelement, following different routes. As an example, most of the radium remains associated with the un-dissolved material waste, with activity concentrations around 3 kBq kg(-1) of (228)Ra and around 1 kBq kg(-1) of (226)Ra, while the final commercial products (TiO2 pigments and co-products) contain negligible amounts of radioactivity. The obtained results have allowed assessing the possible public radiological impact associated with the use of the products and co-products obtained in this type of industry, as well as the environmental radiological impact associated with the solid residues and liquid generated discharges.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2013.01.002DOI Listing

Publication Analysis

Top Keywords

production process
16
radiological impact
12
activity concentrations
12
titanium dioxide
8
environmental radiological
8
impact associated
8
process
6
production
5
radioactive characterization
4
characterization main
4

Similar Publications

The Explo'Santé mixed methods protocol: an interventional research school health promotion project in France.

Arch Public Health

January 2025

Laboratory Health Systemic Process (P2S), Research Unit, UR4129, University Claude Bernard Lyon 1, University of Lyon, 11 rue Guillaume Paradin, Lyon, 69008, France.

Background: According to WHO, "noncommunicable diseases (NCDs) kill 41 million people" annually, as the primary cause of death globally. WHO's Global Action Plan for the prevention and control of NCDs 2013-2020 (extended) tackles this issue and its implications regarding inequalities between countries and populations. Based on combined behavioural, environmental and policy approaches, health promotion aims to reduce health inequities and address health determinants through 3 strategies: education, prevention and protection.

View Article and Find Full Text PDF

Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA).

View Article and Find Full Text PDF

Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.

Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.

View Article and Find Full Text PDF

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Emerging strategies for nitric oxide production and their topical application as nanodressings to promote diabetic wound healing.

J Nanobiotechnology

January 2025

Department of Biobmedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.

The challenges associated with prolonged healing or non-healing of chronic diabetic wounds contribute significantly to the increased incidence of lower limb amputation. A pivotal factor in the impediment of healing is the reduced production of endogenous nitric oxide (NO) due to the hyperglycemic microenvironment typical of chronic diabetes. While both endogenous and exogenous NO have been shown to promote the healing process of diabetic wounds, the direct application of NO in wound management is limited due to its gaseous nature and the risk of explosive release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!