The 26S proteasome is the executive arm of the ubiquitin-proteasome system. This 2.5-MDa complex comprising the 20S core particle (CP) and the 19S regulatory particle (RP) is able to effectively execute its function due to a tightly regulated network of allosteric interactions. From this perspective, we summarize the current state of knowledge on these regulatory interdependencies. We classify them into the three functional layers-within the CP, within the RP, and at the CP-RP interface. In the CP, allosteric effects are thought to couple the gate opening and substrate proteolysis. Gate opening depends on events occurring in the RP-ATP hydrolysis and substrate binding. Finally, a number of processes occurring solely in the RP, like ATP hydrolysis or substrate deubiquitylation, are also proposed to be allosterically regulated. Recent advances in structural studies of 26S proteasome open up new avenues for dissecting and rationalizing the molecular basis of these regulatory networks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2013.01.036DOI Listing

Publication Analysis

Top Keywords

26s proteasome
12
allosteric effects
8
gate opening
8
hydrolysis substrate
8
effects regulation
4
regulation 26s
4
proteasome activities
4
activities 26s
4
proteasome executive
4
executive arm
4

Similar Publications

Hantaan virus glycoprotein Gc induces NEDD4-dependent PTEN ubiquitination and degradation to escape the restriction of autophagosomes and facilitate viral propagation.

FASEB J

January 2025

State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China.

Hantaan virus (HTNV) infection causes severe hemorrhagic fever with renal syndrome (HFRS) in humans and the infectious process can be regulated by autophagy. The phosphatase and tensin homolog (PTEN) protein has antiviral effects and plays a critical role in the autophagy pathway. However, the relationship between PTEN and HTNV infection is not clear and whether PTEN-regulated autophagy involves in HTNV replication is unknown.

View Article and Find Full Text PDF

Activators of the 26S proteasome when protein degradation increases.

Exp Mol Med

January 2025

Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.

In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.

View Article and Find Full Text PDF

The 26S proteasome complex is the hub for regulated protein degradation in the cell. It is composed of two biochemically distinct complexes: the 20S core particle with proteolytic active sites in an internal chamber and the 19S regulatory particle, consisting of a lid and base subcomplex. The base contains ubiquitin receptors and an AAA+ (ATPases associated with various cellular activities) motor that unfolds substrates prior to degradation.

View Article and Find Full Text PDF

Inhibition of proteolytic and ATPase activities of the proteasome by the BTK inhibitor CGI-1746.

iScience

November 2024

Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA.

Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been shown to synergize with proteasome inhibitors (PIs) in reducing the viability of cells derived from B cell malignancies, but the mechanism is not known. We report here that an off-target effect of ibrutinib causes synergy because not all BTK inhibitors exhibited the synergistic effect, and those that synergized did so even in cells that do not express BTK. The allosteric BTK inhibitor CGI-1746 showed the strongest synergy.

View Article and Find Full Text PDF

Ethylene is an important plant hormone whose production relies on the action of key enzymes, one of which is 1-aminocyclopropane-1-carboxylate synthase (ACS). There are three classes of ACS, which are all partially regulated by degradation through the ubiquitin-proteasome system (UPS), which regulates ethylene production. Arabidopsis has a single class III ACS, ACS7, but although it is known to be degraded by the 26S proteasome, the UPS proteins involved are poorly characterised.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!