Apoptosis has been implicated in sperm chromatin damage; it is unclear whether apoptosis occurs through cytoplasmic or mitochondrial pathways. Sperm has minimal volume of cytoplasm but prominent mitochondria. Propidium iodide (PI), annexin V (AV), DiIC1(5) and proprietary fluorochrome (PF-1) were used to investigate apoptosis activation in human sperm using multichannel flow cytometry. There was a time-dependent increase in staining of spermatozoa with both AV and PF-1 and decrease in mitochondrial staining with DiIC1(5). These results strongly suggest that the drop in mitochondrial potential precedes changes in membrane phospholipids, and thus suggest apoptotic activation through mitochondrial pathway in human spermatozoa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rbmo.2012.12.005DOI Listing

Publication Analysis

Top Keywords

chromatin damage
8
flow cytometric
4
cytometric characterization
4
apoptosis
4
characterization apoptosis
4
apoptosis chromatin
4
damage spermatozoa
4
spermatozoa apoptosis
4
apoptosis implicated
4
implicated sperm
4

Similar Publications

Flap endonuclease 1 repairs DNA-protein cross-links via ADP-ribosylation-dependent mechanisms.

Sci Adv

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.

DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.

View Article and Find Full Text PDF

Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.

View Article and Find Full Text PDF

DNA damage and its links to neuronal aging and degeneration.

Neuron

January 2025

Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:

DNA damage is a major risk factor for the decline of neuronal functions with age and in neurodegenerative diseases. While how DNA damage causes neurodegeneration is still being investigated, innovations over the past decade have provided significant insights into this issue. Breakthroughs in next-generation sequencing methods have begun to reveal the characteristics of neuronal DNA damage hotspots and the causes of DNA damage.

View Article and Find Full Text PDF

Acute exposure to nitrogen mustard induces rapid nuclear component regulation and delayed stress to exogenous stimuli.

Int Immunopharmacol

January 2025

Clinical and Public Health Research Center, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Health Center for Women and Children, Chongqing, China; Chongqing Research Center for Prevention & Control of Matermal and Child Disease and Public Health, Chongqing, China. Electronic address:

Nitrogen mustard (NM) is a vesicant agent with potent toxic effects on various tissues. Numerous theories have been proposed to explain its toxic mechanisms, yet research on the interconnections among these theories is lacking. This study focuses on analyzing the characteristics of genes involved in NM-induced bronchial injury within the Comparative Toxicogenomics Database (CTD).

View Article and Find Full Text PDF

ATR plays key roles in cellular responses to DNA damage and replication stress, a pervasive feature of cancer cells. ATR inhibitors (ATRi) are in clinical development for treating various cancers, including those with high replication stress, such as is elicited by ARID1A deficiency, but the cellular mechanisms that determine ATRi efficacy in such backgrounds are unclear. Here, we have conducted unbiased genome-scale CRISPR screens in ARID1A-deficient and proficient cells treated with ATRi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!