Primordial germ cells (PGCs) undergo dramatic rearrangements to their methylome during embryogenesis, including initial genome-wide DNA demethylation that establishes the germline epigenetic ground state. The role of the 5-methylcytosine (5mC) dioxygenases Tet1 and Tet2 in the initial genome-wide DNA demethylation process has not been examined directly. Using PGCs differentiated from either control or Tet2(-/-); Tet1 knockdown embryonic stem cells (ESCs), we show that in vitro PGC (iPGC) formation and genome-wide DNA demethylation are unaffected by the absence of Tet1 and Tet2, and thus 5-hydroxymethylcytosine (5hmC). However, numerous promoters and gene bodies were hypermethylated in mutant iPGCs, which is consistent with a role for 5hmC as an intermediate in locus-specific demethylation. Altogether, our results support a revised model of PGC DNA demethylation in which the first phase of comprehensive 5mC loss does not involve 5hmC. Instead, Tet1 and Tet2 have a locus-specific role in shaping the PGC epigenome during subsequent development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684274PMC
http://dx.doi.org/10.1016/j.stem.2013.01.016DOI Listing

Publication Analysis

Top Keywords

dna demethylation
20
tet1 tet2
16
genome-wide dna
12
primordial germ
8
germ cells
8
initial genome-wide
8
demethylation
6
tet1
5
dna
5
stage-specific roles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!