Discriminating Francisella tularensis and Francisella-like endosymbionts in Dermacentor reticulatus ticks: evaluation of current molecular techniques.

Vet Microbiol

USC BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, UPEC, 23 Avenue du Général de Gaulle, 94706 Maisons Alfort cedex, France.

Published: May 2013

Francisella tularensis, the causative agent of tularemia, is commonly transmitted by ticks. To ensure accurate F. tularensis reporting rates in epidemiological surveys, specific discrimination between F. tularensis and Francisella-like tick endosymbionts (FLEs) is absolutely critical. Four molecular available techniques capable of distinguishing Francisella spp. were compared here for the first time in French Dermacentor reticulatus ticks in order to estimate their specificity as well as their ease and speed of use. Results showed that tul4 and fopA real-time PCR assays can easily and effectively discriminate between F. tularensis and FLEs in D. reticulatus. In addition, a high prevalence of FLEs in D. reticulatus collected in France was reported by the use of fopA real-time PCR assay (79%). Finally, phylogenetic analysis showed that FLEs isolated from D. reticulatus correspond to a well-defined group compared to FLEs originating from various tick species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2013.01.014DOI Listing

Publication Analysis

Top Keywords

francisella tularensis
8
tularensis francisella-like
8
dermacentor reticulatus
8
reticulatus ticks
8
molecular techniques
8
fopa real-time
8
real-time pcr
8
fles reticulatus
8
tularensis
5
reticulatus
5

Similar Publications

Unveiling the versatility of the thioredoxin framework: Insights from the structural examination of DsbA1.

Comput Struct Biotechnol J

December 2024

Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia.

In bacteria the formation of disulphide bonds is facilitated by a family of enzymes known as the disulphide bond forming (Dsb) proteins, which, despite low sequence homology, belong to the thioredoxin (TRX) superfamily. Among these enzymes is the disulphide bond-forming protein A (DsbA); a periplasmic thiol oxidase responsible for catalysing the oxidative folding of numerous cell envelope and secreted proteins. Pathogenic bacteria often contain diverse Dsb proteins with distinct functionalities commonly associated with pathogenesis.

View Article and Find Full Text PDF

in Wild Lagomorphs in Southern Spain's Mediterranean Ecosystems.

Animals (Basel)

November 2024

Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain.

is a vector-borne zoonotic bacterium that causes tularemia, a disease of great importance for animal and public health. Although wild lagomorphs are considered one of the major reservoirs of this bacterium, information about the circulation of in European wild rabbit () and Iberian hare () populations in Europe is still very limited. In Spain, is present in northern central regions, with recurrent outbreaks occurring annually.

View Article and Find Full Text PDF

Tularemia is a re-emerging zoonosis in many endemic countries. It is caused by , a gram-negative bacterium and biological threat agent. Humans are infected from the wild animal reservoir, the environmental reservoir or by the bite of arthropod vectors.

View Article and Find Full Text PDF
Article Synopsis
  • - Human infections from a dangerous bacteria usually occur through contaminated sources like water and food, and the bacteria can survive in these environments for extended periods.
  • - A lab study demonstrated that this bacteria can remain viable in fresh water for 3 to 8 weeks at low temperatures, leading researchers to explore the genetic factors that support this persistence.
  • - The research identified a key gene, murein peptide ligase, which is essential for the bacteria’s survival in water and during stress, emphasizing the role of bacterial cell walls in adapting to various environmental challenges.
View Article and Find Full Text PDF

An Emerging Role for Ticks as Vectors of Tularaemia in Sweden.

Vet Med Sci

January 2025

Department of Chemistry, Environment and Feed Hygiene, SVA, Uppsala, Sweden.

Background: The zoonotic bacterium Francisella tularensis, the causative agent of tularaemia, can be transmitted to humans via multiple routes, including through contact with infected animals, contaminated water or arthropod vectors. Ticks have not previously been described as transmitting the disease in Sweden. Recently, Ixodid tick species have expanded their latitudinal and altitudinal range in Sweden to areas where the disease is endemic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!