Francisella tularensis, the causative agent of tularemia, is commonly transmitted by ticks. To ensure accurate F. tularensis reporting rates in epidemiological surveys, specific discrimination between F. tularensis and Francisella-like tick endosymbionts (FLEs) is absolutely critical. Four molecular available techniques capable of distinguishing Francisella spp. were compared here for the first time in French Dermacentor reticulatus ticks in order to estimate their specificity as well as their ease and speed of use. Results showed that tul4 and fopA real-time PCR assays can easily and effectively discriminate between F. tularensis and FLEs in D. reticulatus. In addition, a high prevalence of FLEs in D. reticulatus collected in France was reported by the use of fopA real-time PCR assay (79%). Finally, phylogenetic analysis showed that FLEs isolated from D. reticulatus correspond to a well-defined group compared to FLEs originating from various tick species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2013.01.014 | DOI Listing |
Comput Struct Biotechnol J
December 2024
Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia.
In bacteria the formation of disulphide bonds is facilitated by a family of enzymes known as the disulphide bond forming (Dsb) proteins, which, despite low sequence homology, belong to the thioredoxin (TRX) superfamily. Among these enzymes is the disulphide bond-forming protein A (DsbA); a periplasmic thiol oxidase responsible for catalysing the oxidative folding of numerous cell envelope and secreted proteins. Pathogenic bacteria often contain diverse Dsb proteins with distinct functionalities commonly associated with pathogenesis.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain.
is a vector-borne zoonotic bacterium that causes tularemia, a disease of great importance for animal and public health. Although wild lagomorphs are considered one of the major reservoirs of this bacterium, information about the circulation of in European wild rabbit () and Iberian hare () populations in Europe is still very limited. In Spain, is present in northern central regions, with recurrent outbreaks occurring annually.
View Article and Find Full Text PDFFront Microbiol
November 2024
Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France.
Tularemia is a re-emerging zoonosis in many endemic countries. It is caused by , a gram-negative bacterium and biological threat agent. Humans are infected from the wild animal reservoir, the environmental reservoir or by the bite of arthropod vectors.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA.
Vet Med Sci
January 2025
Department of Chemistry, Environment and Feed Hygiene, SVA, Uppsala, Sweden.
Background: The zoonotic bacterium Francisella tularensis, the causative agent of tularaemia, can be transmitted to humans via multiple routes, including through contact with infected animals, contaminated water or arthropod vectors. Ticks have not previously been described as transmitting the disease in Sweden. Recently, Ixodid tick species have expanded their latitudinal and altitudinal range in Sweden to areas where the disease is endemic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!